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We describe a cutting plane approach to the problem of designing survivable fiber optic communication networks. This
problem can be formulated as a minimum cost network design problem with certain low-connectivity constraints.
Computational results on real-world telephone network design problems demonstrate the eflectiveness of our cutting
plane method. The facet-inducing inequalities for the convex hull ofthe solutions to this problem on which our algorithm
is based are studied in detail in a companion paper.

Qurvivability is a particularly important issue for
\J fiber optic communication networks. The high
capacity of fiber facilities results in much more sparse
network designs with larger amounts of traffrc carried
by each link than is the case with traditional band-
widthlimited technologies. This increases the poten-
tial damage to network services due to link or node
failures. It is necessary to tradeoff the potential for
lost revenues and customer goodwill against the extra
costs required to increase the network survivability.
Recent work on methods for designing survivable frber
communication networks by Cardwell, Monma and
Wu (1989), and Monma and Shallcross (1989) con-
cludes that "two-connected" topologies provide a high
level of survivability in a cost elfective manner, and
that good heuristic methods exist for quickly generat-
ing "near-optimal" networks. In particular, it was
determined that a network topology should provide
for at least two diverse paths between certain "special"

offices, thus providing for protection against any single
link or single node failure for traffic between these
offices. These special oflices represent high revenue
producing offices and other offices that require a
higher level of network survivability.

Our paper presents a so-called cutting plane algo-
rithm for computing a minimum cost network that

satisfies the survivability conditions described above.
The costs considered here are only those needed for
establishing the network topology, such as placing
conduits in which to lay fiber cables, placing the cables
into service, and other related costs. We do not con-
sider routing, multiplexing, and repeater costs. Com-
putational results show that our algorithm can
compute, within a few minutes, minimum cost sur-
vivable telephone networks of the type and size arising
at Bell Communications Research. We could also
show that the heuristic solutions reported by Monma
and Shallcross (on certain real-world instances oftele-
phone network design) are actually near-optimal.

The cutting plane approach used in our algorithm
is based on optimization over the convex hull of the
solutions to the survivable network design problem,
the so-called 2ECON or 2NCON polyhedron. A gen-
eral, integer linear programming approach to network
design problems with connectivity requirements is
presented in Grotschel, and Monma ( 1990) along with
a preliminary study ofthese problems from a polyhed-
ral point of view. Several classes of facet-defining in-
equalities for the 2ECON and 2NCON polyhedron
were identified in our companion paper (Grotschel,
Monma and Stoer 1989). The present paper is based
on the theory developed in Grotschel, Monma and
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Stoer (1989), and we shall make several references to

these results in what follows. A special case' where at

least two edge-disjoint paths are required between all

pairs of oflices, is investigated by Cornu6jols, Fonlupt

and Naddef (1988), Mahjoub (1988)' and Monma,

Munson and Pulleyblank (1990) from the polyhedral

point of view.
Section I introduces graph-theoretical notation and

an integer linear programming model of the survivable

network design problem with low-connectivity con-

straints. In Section 2, we describe an approach for

decomposing the network design problem into smaller

problems that can be solved independently of each

other. In Section 3, we summarize the classes of facet-

inducing inequalities from Grbtschel and Monma,

and Grotschel, Monma and Stoer (1989) that we use

in our implementation. The details of the implemen-

tation and the heuristic and exact separation algo-

rithms used to generate violated inequalities are

described in Section 4. Computational results on real-

world telephone network design problems are pre-

sented in Section 5, and compared to results obtained

by the heuristic methods in Monma and Shallcross'

1. NOTATION AND DEFINITION OF THE

ASSOCIATED POLYHEDRA

The problem of designing survivable hber optic

communication networks can be modeled as a

minimum cost network design problem with certain

low-connectivity constraints' More precisely' we are

given a graph G: (V, E),where V is a set of nodes

ihut t pt.t.nts oflices that must be interconnected by

a network, and E is a collection of edges that represent

the possible pairs of nodes between which a direct

transmission link can be placed. The graph G may

have parallel edges but contains no loops' Each edge

e E E has a nonnegative Jixed cost c" of establishing

the direct link connection' The cost of establishing a

network N : (V,F) consisting of a subset F e E of

edges is c(F) :: Z"er c", the sum of the costs of the

individual links contained in ,F. The goal is to build a

minimum cost network so that certain survivability

conditions, which we describe below, are satisfied'
The survivability conditiors require that the net-

work satisfy certain edge and node connectivity

requirements. In particular, a nonnegative integer r.'

is associated with each node s e V hhat represents its

connectivity requirement. This means that' for each

pair of distinct nodes s, t e V, the network N :

(V, F) to be designed has to contain at least

r(s, l) := min{r,, r,}

edge-disjoint (or node-disjoint) [s, l]-paths. We call r,

lhe connectivity type ofnode s, or the type of node s'

In the remainder of this paper we consider the

important, practical case where the connectivity

requirements satisfy r, € [0, 1,2] for all s e V'

This includes the problem of designing survivable

fiber optic telephone networks (Cardwell et al'

1988, Cardwell, Monma and Wu 1989, and Monma

and Shallcross 1989). We defrne the 2ECON (re-

spectively, 2NCON) problem to be the network design

pioblem where edge-disjoint (respectively, node-dis-
joint) paths are required, and we will speak in this

case of two-connected edge (or node) survivability

constraints. We will say that a 2ECON or a 2NCON

problem is given by (G, r) and implicitly assume that

G : (V, E) is a graph and r a vector of node types

wi th  r  e  10 , l ,2 lv .
Given a graph G : (V, E) and W e Z, the edge set

6 ( r n  =  V j  e  E l i e  W ,  j  e  V \ W l

is called the cut (induced bv W). (We will wite ac(\il)

to make clear-in case of possible ambiguities-with
respect to which graph the cut induced by I4z is con-

sidered.) For W, W' g V wilh W n W' : 4r, we define

lW :  W' l  : :  l i i  e  E l i  e  W,  j  e  W'1 ,  so  6(W)  :

iW , vfW). We write D(u) for D([u]) if u is a single

nodei W and V\W are called the shores of the

cut 6(M.
For W C Z, we set E(W) :: l i i e El i, j E Wl, and

denote bV GlWl:: (W, EQn) the subgraph induced

by W. We denote by GIW the graph in which W C V

is shrunk to a node. G - u denotes the graph obtained

by removing the node u and all incident edges from

G, and G - Fdenotes the graph obtained by removing

the edge set F from G (we write G - f instead of

G - lf D. If e is an edge, so that G - e has more

connected components than G, we will call e a bridge

of G. Similarly, if S is a node set, so that G - S has

more connected components than G, we call S an

articulation set of G.If a single node forms an articu-

lation set, the node is called an articulation node'
We extend the connectivity requirement function r

to functions operating on sets by setting for all

W C V , A + W + V ,

r(W) :: maxfr, I s e Wl for all W e V, and

con(W)::  maxlr(s.  r)  ls c W. t  e V\Wl

: :  minl(r(W). r(V\Wl|

Let us now introduce, for each edge e € E, a variable

,x" and consider the vector space RE. Every subset

F C E induc es an incidence vector XF : (Xf)*r € Rt

by setting X! '.: I if e e F, and X! :: 0 otherwise;
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o < x ; <  I

xa integral

for all ij e E;

for all ij € E.

vice versa. each 0/l-vector x € R'induces a subset
F' :: le e Elx": l l  of the edge set E of G. For any
subset of edges f'C ,8, we define x(F) :: )".r &. We
can now formulate the 2NCON network design prob-
lem introduced above as the following integer linear
program.

Minimize Z c,rx,i
I J C L

subject to

x(6(rn) >- con(W) for all W C V,
6 * w * v ; ( l a )

x(6c-,( rn) > | for all z € V, and
fora l lWCV\ lz l ,

Q +  W *  V \ l z l
w i th  / (W) :2  and
r (v \ (wu bD) :2 ;  ( lb )

Cornu6jols, Fonlupt and Naddef study the domi-
nant of the 2ECON(G; r) polytope in the special case
where r :2.1 (l is the vector with all components
equal to l). Monma, Munson and Pulleyblank study
the 2ECON(G; r) and 2NCON(G; r) polltope in the
special case where r: 2.1, and G is a complete graph
with the edge weights satisfying the triangle inequality;
they show that, in this case, there is an optimal solu-
tion to 2ECON that is also feasible for 2NCON, and
they give a certain type of "characleization" of the
optimal solutions. Mahjoub found that inequalities
(la) and (lc) are sufficient to characterize the
2ECON(G; r) polytope, where r : 2.1 and G is a
series-parallel graph. He also describes a class of ine-
qualities for the 2ECON(G; r)-polytope for general
g raphs (and r :2 .1 ) .

2. DECOMPOSITION

In this section, we describe an approach for decom-
posing the network design problem into smaller prob-
lems that can be solved independently of each other.
This is especially useful for the sparse graphs of the
real-world communication network design problems
that we have encountered. Sparse graphs may contain
edges that always have to be used by feasible solutions
of 2ECON or 2NCON, bridges, for instance. If such
edges exist (and also in other cases) it is possible to
decompose the problem into several subproblems that
can be solved independently ofeach other.

Reducing the problem size by decomposition
resulted in substantial reductions in the runnine time
of our algorithm; see Section 5.

Another advantage of decomposition is that we may
confine our polyhedral studies to those network design
problems that are defined on "nondecomposable"

graphs. This implies that the investigated polyhedra
are fully dimensional. Details are given in Grotschel
and Monma.

Next we will list some situations where decom-
position can be applied for a 2ECON or a 2NCON
problem given by (G, r).

l. For 2ECON and 2NCON: if graph G has a bridge
or an articulation node.

2. For the 2NCON problem: if G has an articulation
set of size 2 separating two nodes of type 2, or for
the 2ECON problem: if G contains a cutset of two
edges separating two nodes oftype 2.

3. For 2ECON and 2NCON: if G contains an artic-
ulation set of size 2 separating a node of type I
from a node oftype 2, but not separating two nodes
of type 2. (Decomposition in this case results in

(  1c)

( l d )

It follows from Menger's Theorem that, for every
feasible solution x of ( I ), the subgraph I,{ : (V, F ) of
G defines a network satisfying the two-connected node
survivability requirements. Removing (lb) results
(again by Menger's Theorem) in solutions that satisfy
the two-connected edge survivability requirements;
i.e., we have an integer linear program for the 2ECON
network design problem. An inequality of type (1a)
will be called a cut inequality, one of type (1b) is called
a node cut inequality, and one oftype (1c) is called a
trivial inequality. In Section 4, we note that the cut
and node cut inequalities can be checked in polynom-
ial time, and we show that the separation problem is
NP-hard for all other classes of inequalities considered
here.

The main objective of this paper is to describe a
cutting plane approach for the 2ECON and 2NCON
network design problems, respectively. To do this, we
define the following poly4opes. Let G : (V, E)
and r € |.0, l, 2ll, the vector of node types, be
given, then

2NCON(G; r )  : :  convfx € R' lx

satisfies (a), (b), (c), (d) of(l)|

2ECON(G; r )  : :  conv{x e R' lx

satisfies (a), (c), (d) of (1)l

are the polltopes associated with the 2NCON and
2ECON network design problems. (In these defini-
tions, conv denotes the convex hull operator.) We will
call these the 2NCON and 2ECON polytopes.
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subproblems that cannot be solved independently
ofeach other, but rather can be solved in a recursive

manner.)

Before going into the details of these decom-
positions, let us mention a strategic choice of our

implementation. In a first preprocessing stage, our

atgorittrm tries to find articulation nodes and bridges

to decompose the original problem into subproblems'

These are then solved independently of each other'

For some of the decompositions listed above we have

implemented only special cases so far'

2.1. Bridges and Articulation Nodes

Let the graph G : (V, E) and the node types / €

10, l, 2l'Le given. Suppose that G has a bridge'e 
: up2, and G - e decomposes into two subgraphs

G, = (V,, Er) and Gz : (Vz, E ) with u1 E Vt

and uz € vz.lf r(v) : r(vz) : 2, the2EcoN problem

has no solution. The case r(V) : 0 or r(V): 0 is

also trivial. In any other case, define new node types

rr for Gr by setting rl(u1) :: maxlr(u1), 1l and r'(u) ::

r(u) for ali other nodes of Gr. For G: we define node

types 12 in the same way. Clearly, if Cr E Er is a

feasible solution to 2ECON on (Gr' 11) and C, C E'

is a feasible solution to 2ECON on (G2, rz), then Cr U

C2v lel is a feasible solution to the original 2ECON

problem on graph G. The reverse also holds' So we

can solve 2ECON on (Gr, r') and (Gt, r') indepen-

dently of each other to find a solution for 2ECON on

(G, r).' 
ih. *-. (trivial, but useful) idea can be applied if

G has an articulation node u.

2.2. Articulation Sets of Size 2 Separating
Two Nodes ol TYPe 2

For the 2NCON problem it is also useful to look for

articulation sets consisting of two nodes {u, ul, whose

removal from G creates at least two components

that each contain type two nodes' Lel (Vt E'), i :

l, . . . ,p be the p different components of G - [u' u]'

Define Gi : (Vi, E), i : l, . .. , p as the graph obtained

from ( Vu E,) by adding nodes z and u, the edge set

llu, ul:Vil n E, and an artificial edge ei := uu with

.ttt O. lNote ttrat an edge between u and u in G will

be contained in an optimum solution if and only if its

cost is negative.) For Gi we define a vector rr of node

types by setting r', i: r, for all nodes s € Vi, and

Clearly, if C is feasible for 2NCON on (G' r), then
(, i: (C fl Er) plus the artificial edge is feasible for

2NCON on (Gi, rr) for I : 1, ' .., p. Conversely, if

Ci e -Ei, i : l, . .., P is feasible for 2NCON on
(Gi, ri), then U,p=r (Ct n E) is feasible for 2NCON

on (G, r). So we can solve the p subproblems defined

on (G;, ri) to derive a feasible solution to 2NCON on

the whole graph G. (See Figure l. Here and in all

other figures, big squares denote node sets W with

r(LV) : 2, and big circles denote node sets W with

r(W) : l. Nodes of type I or 2 are denoted by small

circles and squares, respectively' A node of type 0 is

depicted only by its name without any symbol')
Note that this decomposition (using an articulation

set of size 2) is, in general, infeasible for the 2ECON
problem. But, if there exists a cut of two edges [e,/l
so that in G - le, fl two nodes of type 2 are discon-

nected, both of these edges have to be used by any

feasible solution, and we can decompose the 2ECON
problem on G in the same manner as above.

So far, we have implemented only a special case of

this type of decomposition. It is the case where G

contains a node w oftype 2 and exactly two neighbor

nodes u and u. If there is still one more node of type

2 besides u, u, and w, the decomposition described

above can be applied to the articulation set lu, ul, that

is, we replace the edges uw and wu by a single edge zu

with cost 0.

2.3. Articulation Sets of Size 2 Separating
Two Nodes of TYPe > 1

The following decomposition works for the 2ECON'

2NCON, and even the Steiner tree problem' It is

motivated by a similar sort of decomposition for the

r'u 1=

i f  r (V, ) :  2 ,
i f  r(V,) :  r,
if r(V'1 : g'

( )
I  o ,

jmaxl r , ,  I  l ,
[0 , Figure 1. DecomPosition using an

size 2.r'" is defrned analogouslY.

articulation set of



Steiner tree problem on directed graphs described by
Prodon, Liebling and Groflin (1985).

The decomposition to be described here can be used
in the situation where G contains an articulation set
lu, ul separating a node oftype I from a node of type
at least l, but not separating two nodes of type 2.
Actually, there are three decompositions according to
the node types of u and u, namely for the cases that:

l .  r u :  r ,  :  0 ,

2 .  r u >  I  a n d  r , : 9 ,

3.  r ,2  |  and r ,  >-  l ,

A characteristic of these decompositions is that the
subproblems must be solved in a certain order, not
independently of each other, because the output of
several of these subproblems determines the input to
the last one.

2.3.1. Both Nodes in the Articulation Set Are of
Type 0

Let G : (V, E) be a graph and r C (0, I, 2ll a vector
of node types. Let lu, ul be an articulation set with
ru : tu : 0, so that G - lu, ,l has two components
G' : ( Vr, E,) and G2 : (Vr, Er; with r(V,1 : 1 un6
r(Vt) > L We augment the component Gr to a graph
Gr : (Vt, Et) by adding the nodes u and u and all
edges in E leading from u and u to the nodes in Gr.
In the same way, we construct a graph G, from Gr. lf
there exist edges uu, we add them either to Gr or to
Gz, but not to both.

lf C C E is a feasible solution to 2ECON on G, the
set 7n:: C n Et (called a partial tree) may have four
diflerent forms, according to whether u and u are
connected in Z, or whether u or u are used at all. More
exactly, ?" is a feasible solution to one of the four
following Steiner tree problems: P,, P6, P", P6. These
subproblems are defined on Gr and use the same costs
and node types for all nodes in Zr\{tt, u} as in the
original problem; only the node types of z and u vary
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as follows:

Pu: r, : I and r, : I and an artificial edge uu
lpwith cost 0 is added;

P5l /", : 0 and r, = 1'

P": ru: I and r, : g'

P6r  ra:  I  and r ,  :  1 .

See Figure 2 for possible feasible solutions to these
problems.

We say that a partial tree I is of type a if T U luul
is feasible for P", and we say that I is of Iype b
(respectively, c or d), if Z is feasible for P5 (respec-
tively, P" or Po). Clearly, a partial tree of type d is also
feasible for the network design problems P", P5, and
R, but generally a solution of type a is not feasible for
the network design problem Pa. So the set of feasible
solutions of type d is a subset of the feasible solutions
oftype a.

Let To, Tt, 7", Tabe the four optimal solutions of
each type a, b, c, dwith values a, b, c, d, respectively.
Note that d >- maxla, b, cl.

Now we replace the graph Gt in G by a simpler
graph Gi : (Vi, ti) (the gadget), consisting of three
edges uu' , tr'u' , u'u with edge weights depending on
the values a, b, c, d(see Figure 3). The nodes z'and
u' receive node type l; u and u retain their node types.
We call the resulting graph G' (: Gz plus the gadget).

For any feasible solution C' in G', the set
C' n Ei has only four different forms, namely,

T' . :=  Ei \ lu 'u '1 ,

TL := Ei\ luu'1,

T i := Ei \ luu '1 ,

T i : :  E i .

Let k denote the value a + b + c - 2d.

I

( o ) (b )

Figure 2. Partial trees.

( . ) ( d )
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d - b

Step I. Construct two graphs Gr : (Vt, Er) and
Gz = (Vz, E2) from G, and Gz, as described above'

Step 2. Solve the four Steiner tree problems Pu, P6,
P", P6 in Gr. Let To, Tb,7,, Tabe the corresponding
optimal solutions with costs a, b, c, and d, respectively
(see Figure 2).

Step 3. Construct graph G' (see Figure 3) and solve
one 2ECON problem (or the 2NCON or Steiner-tree
problems) on this graph. (Here Algorithm I may be
called recursively.)

Step 4. Let C' be the optimal solution found in
Step 3. Set Cz :: C' n E2 and T:: C'\G.

l f  T :  TL  se t  C: :  C2U To,
if T : TL set C :: Cz U Tt, etc.
Step 5. C is the optimal solution for the 2ECON

problem on G (or the 2NCON or the Steiner-tree
problems).

2.3.2. Only One Node in the Articulation Set is of
Type 0

Further simplification is possible if one of the cut
nodes u and u, say u, is of type at least l, and if
tu: 0. We can decompose graph G into two graphs
Gr and G2, as above. Let the partial trees in Gr be
defined as above. In this case, it is not necessary to
distinguish between partial trees of type a or b, so we
can replace G1 in G by a gadget Gi with only two
edges and an artificial node u'; r, and ru retain their
former values, and r",is set to 1 (see Figure 5). The
values o, c and d are defrned as the optimal values of
the Steiner tree problems P", R, and P6 and the
additive constant k is defined as a + c - d. We set
T' , : :  lu 'ul ,  T' ,  ' . :  lu 'ul ,  and Ti : -  l l4u' ,  u 'ul .  Now
we can proceed with Step 3 of Algorithm I to find an
optimal solution to the 2ECON problem on G.

2.3.3. No Node in the Articulation Set is of Type 0

If both nodes z and u in the articulation set are of
type at least l, we need only distinguish between
partial solutions of type a or d, so we compute the
values a and d and solve the 2ECON problem on

) -

Figure 3. Gadget.

Clearly, if C' is feasible for the 2ECON problem

defined on G' and the set T' :: C' o Ei is Tl,then
T L canbe replaced in C' by T o to get a feasible solution
for the 2ECON problem on G, and conversely. More-

over, the edge weights in the gadget and the constant
k are chosen so that C(7"): c'(TD + k.

The graph G' with gadget Gi and edge weights is
displayed in Figure 3, and the four possible partial

solutions T',, T L, etc. are shown in Figure 4' Note that
d > maxla, b, c|, so the edge weights are nonnegative.

On graph G' exactly one 2ECON problem is solved.
Let C' be the optimal solution. C' can be written as
Cz u T' with G c E2 and T' g Ei. If T' : T'.,
then C :: Cz lJ T, is a feasible solution in G with
the same cost as C' (except for the additive con-
stant k) because c(C') + k: c(Cz) + c'(TD + k :

c(C) + c(7.) :  c(C).
Therefore, if C' was optimal for the 2ECON prob-

lem on G', then C is optimal for the 2ECON
problem on G, and converselY.

Let us summarize this decomposition procedure.

Algorithm 1

We assume that G contains two nodes u, u of type 0,
such that G - lu, u| has two components G' :

(Vr, E,) and Gz : (Vr, E ) wittr r(V,) : 1 un6
r(Vr) > t .

6HD
Y . "
I
I
u u

6HD. v Y

I
I

6D
t
I

I

( z ' )

Y
I

I
I

Ti, r:

Figure 4. Types of solutions in the gadget.

1a l
t dr:



Figure 5. Gadget.

graph G2 with an additional uu-edge of cost d - a.
The additive constant k is a (see Figure 6). If the edge
au is used by an optimal solution C, we replace zu in
Cby the optimal partial tree of type d, else we augment
C by the optimal partial tree of type a.

This is easy to implement in the special case (and
was implemented by us) that some node w of type I
has exactly two neighbor nodes u and u, both oftype
at least l. In this case, a is min{c(aw), c(wu)l and d -

a is maxlc(uw), c(wu)1. The edge with the lower cost
is always used in an optimal solution, so we can
contract it and keep its weight, namely a, as an addi-
tive constant. The 2ECON problem can then be
solved on the contracted graph. This is exactly what
the "decomposition" amounts to in this simple case.
All other decomposition techniques mentioned in sub-
section 2.3 have not yet been implemented.

We also implemented a rather trivial reduction for
nodes oftype 0 and degree 2. In this case, ifall costs
are nonnegative, an optimal solution will either use
both edges or none. So one edge may be shrunk and
its cost added to the other edge.

We have devised, but not implemented, a further
decomposition procedure for 2ECON using a cut
.t C ,E consisting of three edges so that in G - S two
nodes of type 2 are disconnected. Here ten types of
"partial solutions" are needed. We do not wanr ro
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discuss the details of this decomposition here. An area
of future research is decompositions on articulation
sets of size 3 separating two nodes of type 2. This may
become very complicated because many types of "par-

tial solutions" have to be considered.
Let us give a short summary of the situations that

are recognized and exploited by our code in a first
preprocessing stage:

1. bridges and articulation nodes disconnecting two
nodes oftype at least l; this includes an infeasibility
test for 2NCON (respectively, 2ECON) if there
exists an articulation node (respectively, bridge)
disconnecting two nodes of type 2;

2. nodes ofdegree 2.

For finding bridges and articulation nodes we use a
simple depth-first search algorithm described by
Hopcroft and Tarjan (1973a). For finding articula-
tion sets of size 2 there also exists a linear time
algorithm (see Hopcroft and Tarjan 1973b), based on
depth-hrst search, but that has not been implemented.
Even so, using the (trivial) decompositions listed
above on the real-world problems that we encoun-
tered, the graph sizes could be reduced by about one-
halfon the average.

3. FACET.INDUCING INEQUALITIES

In this section, we describe several classes of facet-
inducing inequalities for the 2ECON and 2NCON
polytopes, which were derived in Grotschel and
Monma, and Grotschel, Monma and Stoer (1989).

Let G : (V, E) be a graph and let W C V with
lW l  >  2 .  We  se t

^(G, ,n:= the minimum cardinality of a subset of E,
whose removal from G disconnects two
nodes of W, and

x(G, W) :: the minimum cardinality of a set S C
V U E' whose removal from G' dis-
connects two nodes of W, where G' :
(V, E') is the simple graph underlying
G.

lf lwl < 2, then \(G, ,n and x(G, W) are defined
as oo. If we consider subgraphs G: (V,.8) of a graph
11 with V g W, we will write I(G, tr41 instead of
^(G, W n Z). We will use these functions frequently
in two special situations. To shorten the notation in
these cases, we introduce the definitions

I(G) :: )\(G, Vi),

x;(G) := x(G, Vi\,Figure 6. Gadget.
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w h e r e  I / , ' :  [ u  €  V l r , > i ] ,  i : 0 ,  1 , ^ 2 r S o  I o ( G )  i s

;;;t'but ihe edge connectivitv of G' and xo(G)

is the node connectivitY of G'

Throughout this section we make the following

assumptions on (G, r)'

a. r e 10, l, zlvand at least two nodes s I / satisfy

f r = f ' - - 2 ;

U. ii *.'.onsider the 2ECON problem' we assume
-- 

that G is 2-node connected and Iz(G) > 3;

.. ii *t consider the 2NCON problem' w€ assume

that G is 2-node connected aid *'(G) > 3' Q)

We will say that (G, r) satisfiet (Z) T'9 mean that the

eraph G : (V, E)anO it'e vector r" eV( of connectivity

ffils;*il.oiiitiont (2) a' b' and c' If.(2a) is not

:'":ffi;ft-inioN problem becomes the Steiner-

i.". ot"Uft-' We do not want to consider this special

case here. If b or " i' not satisfied for some 2ECON

or 2NCON problem, it is possible to decompose it

irr"^*uprourems that satisfy b or c using the tech-

;i;;;;htted in Section 2' For problem instances

A]-;; ,"jti.iritg (z), *" know that.the associated

)"nc<iN tr.tpeclivelv, 2NCON) polvhedron is fullv

dimensional (Grotsfirel and Monma 1990' and

Gr6tschel, Monma and Stoer 1989)'

A full description of the necessary and suffrcient

conditions under which the inequalities listed in the

;**i';;- ruttt-inJt'fing is given. in Giotschel'

irrlt.""to stoer (iqgq)'-tttttt conditions are quite

;;;;il;.iht'"io"' we will onlv give such neces-

r"""i".aiiions' for each type of inequality' that

fr.ip"A to design and could be exploited by a separa-

tion routine'- 
ltt-it.ot"f ity arx < a is valid with,respect to a

p"r;;J;;; P'tr P e lxlarx = "h lT 
set F' :=

t- c ptnrx -- al o "uit.O theface of P deflrned by
'd;; 

". ti'oi.tr,) : dim(P) - I 1n9 F" + o' then

F, is a facetof f anO arx < a is called facet-deJining

or facet'inducing'
Theorem I follows from Theorem 3'3 in Grotschel

and Monma unO "iu*"ttrizes which trivial inequali-

ties (lc) define a facet'

Theorem l. Let (G, r) satisfY (2)'

z. xe 4 | deJines a facet o/ 2ECON(G; i and of

zi'qcoN(c; r) for all e e E'

b. x " 7 0 deJines a faceto/2ECoN(G ; r)'(r espect iv ely'

2NCON(G, r))"for e e E' tf ?4 9yiv if for everv

;;*i) i, i' potvtope 2ECoJ''l(G - le' fl; r)

fiirplrtiurtv,2NboN(G 
- le'fl: r)) is nonemptv'

The next theorem gives necessary conditions for a

cil inequality (la) to define a facet'

Theorem 2. Let (G, r) satisfy (2) and let W e V with

o + w + v .
a. Suppose that con(W) : 2' The!-:\u(Y) > 2 -
" 

;irra irline, a facet o/2ECoN(G; r) onlv if

GlWl and Gll^Vl\ are connected" and

i'iciml > 2 and )\Jclv\w7\ > 2'

b. Suppose that con(W) : t, U:\!!!.(W)) 
> t =

con(W) defines a fa'cet o/ 2ECON(( G; r) if and

only f

GlVl and GIV\Wl are connected" ^
i, icinfl >i andx(Glv\w1)> 2;
)\2GlV\Wl) > 3'

c. Suppose that con(W) : O' rhery l?^(p.) 
> 0 :

con(W) does not deJine afacet of 2ECON(G; r) or

o/2NCON(G; r).

d. Suppose that conl4 : 2- lhen, 
x.{ilvn) > 2

delines a facet o/2NCON(G" r) onty t1

the conditions of a are satisfied; and

rr(GUA) > 2 and xz(Glv\W7) >' 2'

e. Suppose that con(vn : l: Th*, 1G(W)) 
> |

ai1-ines a facet o/2NCON( G " r) ontv t1

the condiilons ofb are satislied""rr(ClVrWl 
- e) > 2 for alt e e E(V \Vt)'

The following theorem gives some conditions for

whenthenodecutintequalit ies(1b)donotde|tnefacets
for 2NCON(G; r)'

Theorem 3. Let (G, r) satisfY (T)

z e V a n d a s e t W e V \ l z l , 6 *
, tWl  :  2  and r (V \ (W u  lz l ) )  :

iode cut inequalitY x(6c-'(W)) >

of2NCON(G'. r) onlY if'

and let a node
W # V\ lz l  with
2 be given. The
I defines a facet

q

b.

d.

G|WT is connected;
)\,(GlW u lzll) >' 2;
),rclVn)> 2'.
Conditions a-c atso nold for W ': V\(W U

instead of W'

The next class of inequalities gtn::1li1lt.the cut

in.q*flti.t. Consider a graptr G -.!,V'E) 
together

with a requirement utttoi' € {0' 1' 2Y a\9a partition

of Z into nonempty subsets Wr ' ' ' ' ' Wo' each con-

taining at least one node of type at least l ' The



partition inequality induced by Wt, . . . ,
by
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ll, is gsven Theorem 5. The node partition inequality (4) defines

afacet of ZNCON(G; r) onlY if

! ,x(6(Vtt))

- | p if r(Wi): 2 for at least two sets I44
=1"0-l i l ; i  ,, i :rforonlvonesetll l '  

'  (3)

Theorem 4. Consider a partition inequality (3) for
2ECON(G; r) (respectively, 2NCON (G; r)). Denote

by G the graph obtained by shrinking node sets Wi in

G to nodes wl of tYPe i(w;):: r(14t1).

a. Suppose that r(W,) : 2 for at least
The partition inequalitY defines
2NCON(G; r) onlY if

.  *r(G) > 3 and r,(G) > 2;

. in G every node of type 2 is adjacent to some node

of type l;
- G has a cycle C containing all nodes oftype2;
. GlW,l is connectedfor i: l, ' ' ' , P\
.  \ ' ( G l W ' l )  >  2  f o r  i  :  1 , . .  . ,  F .

b. Suppose that r(W) : 2 for only one set

The partition inequality defines a facet
2NCON(G; r) onlY if

. rr(G) > 2;

. GIW'I is connected for i : l, ' " , P;
'  \ ' ( G l W t ) )  >  2 f o r  i  :  l , ' ' ' ,  P ;
. \z(GlW,l) >- 3 for the set Wi with r(W,) : 2'

The class of node cut inequalities can be generalized

in a similar way as the class of cut inequalities' The

following class of node partition inequalities are valid

for the 2NCON polytope, but are not generally valid

for the 2ECON polytope. Let G : (V, E) be a graph

and r  €  10 ,  l ,  2 l ' .  Le t  z  e  V  and Ie t  W, , . . . ,  Wobe

a partition of V\lzl into nonempty node sets Wi

with r( W,) : 2 for at least two node sets' The

following node partition inequality induced by z

and W1,. . . , Wo is given bY

\
+ ) x(6c( W)\ + x([ lzl :  l) ' . , ,  W,]) l

t e t t  /

> p - 1 ,  ( 4 )

w h e r e l r ' :  { t €  1 1 , . . . ,  p l l r ( W ' )  :  k l ,  k :  1 , 2 '

. GlW,l is connected for all i e It;

. ^.'(GlWi u {z}l) > 2for all i e h;

.  r ' (GlW,l)  > 2for al l  i  e I ' ;

.  ) ' r (Glwl)  > 2 for i  :  1, .  .  . ,  F.

The next class of inequalities is closely related to

the 2-matching inequalities for the traveling salesman
problem (see Grotschel and Padberg 1985). A subclass

of it is also valid for the poll'tope of 2'covers of G
(i.e., those subgraphs of G where each node has a

degree ofat least 2).
Consider a subset H g V called the handle and a

subset E 6(H). For each e € T we denote by 7" the

set of the two endnodes of e. The sets 7"", e e T, are

called teeth. For simplicity, we also call the edges

e e T teeth in this paper. Furthermore, Il is parti-

tioned into p > 3 sets I1,, Hz,. . ., Ho, with

.  r ( H i )  >  1  f o r  i :  1 , .  '  . ,  P ;

. r(H) : 2 if 14 has a nonempty intersection

some tooth,  i :  l ,  . .  '  ,  F ' ,
. no more than two teeth may intersect any

i  =  1 , ,  . . ,  p ' ,
. lTl > 3 and odd.

Thelifted 2-cover inequalityinducedby TandHl, ' ' ' ,

/1o is defined by

x(E(H)) - x(E(H)) + x(6(11)) - x(T)

I  t r t  |  ( s )> P - l  )  l '
L - J

where Lxl denotes the largest integer not greater than

x. It is valid for 2ECON(G; r), but it does not generally

define a facet of 2NCON(G; r).

Theorem 6. Let Ht, ..., H, and T that satisfy the

requirements above induce a lifted 2-cover inequality'
Denote by G the graph obtainedfrom G by contracting

each set Hi to a vertex hi of connectivity type r(Hi)' A

lifred 2-cover inequality (5) defines a facet of

2ECON(G; r) onlY if

. Glnl is connected',

. )\2(GlHl) > 2;

. GIH'I is connectedfor i: l, . . . , P',

.  X ' (G[11 , ] )  >  2 fo r  i  :  1 , . .  . ,  P .

Ifall nodes in V are supposed to be oftype 2' and

if we take the lI to consist of only one node each, we

two sets Wi.
a facet of

wi.
ol

with

Hi,

p

t

L(',ou'-'''' ' '
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arrive at a subclass of the lifted 2-cover inequalities'

the so-called 2'cover constrainls:

x(E(H)) + x(6(t1)\z) -- | H | - tl r I lzJ

for all Il e V and all T e 6(H)' (6)

These inequalities are valid for the poll4ope of

2-covers. In fact' a complete description for the poly-

tope of 2-covers-consiiting of the degree constraints

in (7), the 2-cover constraints (6)' and the trivial

conrtruint, (lc)-can be derived from a complete

o.r.Jpii"" or tn. b-matching polytope by- viewing

itt. .o*pf.. ent (V, E\C) of a 2'cover (V' C) as

a subgraph of (V, E), whose node degrees may

not exceed a given number b,' The analogy between

Z-"on... and b-matchings allows us to use an algo-

.irn. ftorn b-matching theory to treat lifted 2-cover

in-equatities, as will b" t"tn in the next section'

tvtore tfreoretical details can be found in Cook

and Pulleyblank (1987), and Grotschel' Monma

and Stoer (1991).
There are more classes of inequalities valid for

2ECON(G; r) or 2NCON(G; r) know-n;- see' for

l*t"., Grotschel, Monma and Stoer (1989)' But in

the design of our cutting plane algorithm we restricted

attention to the classes mentioned above'

4. IMPLEMENTATION OF THE CUTTING PLANE

ALGORITHM

In this section, we give an outline of the cutting plane

;i;;;il; for solving 2EcoN problems' and we will

describeourr"puru.-ionroutinesforpartition'node
partition, and lifted 2-cover inequalities'

4.1. An Outline of the Cutting Plane Procedure

In a first preprocessing stage we identify the so-called

essential'edges (edges that have to be used by any

feasible solution), and we decompose the problem into

several nondecomposable subproblems that can be

solved independently of each other' The tools for this

p.o".aut. are e*plained in Section 2' After having

solved all subproblems' we can put the solutions

together in a straightforward manner'

i.t u. assume therefore that we are given a 2ECON

p.oUt.- on (G, r) that cannot be decomposed into

independent subproblems, i'e', (G, r) satisfres (2)' If

nothing else is said, the statements made-in this sub-

section-for 2ECON also apply to 2NCON'

The cutting plane procedure starts with solving

the LP

minimize cr x

subject to

x(6(u)) > r, for all u € I/ with ru 2 l'

0 < x " < 1  f o r a l e e E  Q )

consisting of at most I Zl degree inequalities and

ilz't ,ti"iur inequalities' Almost all of these de-

fine facets (see Theorems I and 2a and b) of

2ECON(G;r).-.-ffie 
optimal solution y € Ru of this relaxation of

2ECON is usually not feasible for the polytope

isCONtC; r). (If it were' we would be frnished')

So, in'each iteration of the cutting plane algorithm

*.,O,o hnd inequalities (more specifrcally: partition

urA iift.O 2-couer inequalities) that are valid for

2ECON(G; r), but are violated by y' (In the case of a

2NCON problem, we also try to find violated node

puaition inequalities.) Geometrically' such an ine-

iuafitv defines a hyperplane in Rt separating y from

it. isCON polyhedron, a so-called "cutting plane'"

The exact algorithms and the heuristics for finding

violated inequalities violated by a given y are called

separation routines.'*e 
add all the violated inequalities found by our

separation routines to the current LP and solve the

revised LP to get a new optimum solution y' (We do

not solve tha n.* LP from scratch' but use postopti-

mization.) We repeat this process until the current

"CI-lt""L ip solution y happens to be . 
feasible for

Z-ECOX(C; r), or no further partition or lifted 2-cover

i*qt"riii., violated by y are found' In the second

;"t;;;. proceed with a branch-and-cut method' This

.nrr-.rutiu.techniquehadtobeappliedinonlythree
of our real-world examPles'

In the first case (y ii feasible) we know that y is

optimal because the present LP is a^relaxalion of the

Z-ECON problem' Note that the feasibility of y is

iOenti.uf with y being a {0, ll-vector that satisfies all

cut constraints(1a). This feasibility criterion is easy to

check.
Of course, since we are using only a subset of all

facet-dehning inequalities for 2ECON (G; r)' we can-

no, U. ,ur.1o find an optimal solution with such

a cutting plane algorithm for all gtaphs G' cost func-

tions c, and connectivity types r' For the majority

of the real-world examples known to us' the relaxa-

tion of the 2ECON polyhedron using partition and

lifted 2-cover inequalities was suflicient to find the

optimal solution.



In any case, even ifthe present fractional solution y

is not feasible, its objective function value c|l provides

a lower bound for the 2ECON problem, which is
increased with every iteration (or at least, it does not
drop). With these lower bounds we can show that the
heuristic methods of Monma and Shallcross for the
2ECON problem perform very well (see Section 5).

We summarize the cutting plane algorithm next.

Cutting Plane Algorithm for the 2ECON
(or 2NCON) Problem

Step l. Decompose the 2ECON (or 2NCON)
problem given by (G, r) into independent sub-
problems.

Step 2. For each subproblem do Steps 3-5:
Step 3. Solve the LP (7). Let y be the optimal

solution to this LP.
Step 4. While y is not feasible for 2ECON(G; r)

(or 2NCON(G; r)) do Step 5:
Step 5. Find violated partition and lifted 2-cover

inequalities, (in the case of 2NCON, also node parti-

tion inequalities), add them to the LP, and solve it.
Let y be the new LP solution. If no violated ine-

qualities can be found, branch on some variable with
fractional value.

Step 6. Put the solutions of all the subproblems
together.

In Sections 4.3-4.8 we describe the separation rou-
tines used in Step 5. In Section 4.2 we show that
the separation problems associated with partition

inequalities, node partition inequalities, and lifted
2-cover inequalities are NP-hard. This means that
our separation routines for these types of inequalities
can only be heuristics.

4.2. Complexity of the Separation Problems

In this section, we show that the separation problems

associated with partition, node partition, and lifted
2-cover inequalities are NP-hard. The same is true
for the class of partition inequalities for the Steiner-
tree poly'tope (see Grotschel and Monma). Note that
the exact separation for the cut inequalities (1a) and
the node cut inequalities (lb) can be performed in
polynomial time using the Gomory-Hu algorithm.

We start with the partition inequalities for the
Steiner-tree problem. Let G : (V, E) be a graph
with connectivity types r, € {0, lf for all u € V. The
Steiner-tree polytope is defined as the convex hull
of all incidence vectors XF, where F contains a
Steiner tree of G spanning the set of "terminal nodes"

lu e V i r,: | |. It can also be characterized as the set
of 10, 1 l-vectors satisfying inequalities ( 1a, c and d).

Designing Low-Connectivity Communication Networks I 319

Let W1, . . ., Wrbe a partition of V into p nonempty
node sets each containing at least one node oftype 1.
The partition inequality

j i < r t w , ) ) > p - 1 , (8)

is clearly valid for the Steiner-tree polltope (see also
Grotschel and Monma).

The separation problem for this and other classes
of inequalities is dehned as follows.

The separation problem for a given class of inequali-
ties. Given a graph G : ( V, E), connectivity types
r, € {0, l,2l for all u e V, and values y" > 0 for all
e e E. Decide whether y satisfies all inequalities of the
given class and, if not, find an inequality of the given

class violated by y.

In our NP-hardness proof, we make use of an
optimization problem related to the separation prob-

lem, with the difference that we want to determine a
"most violated" inequality. Let us ltrst'introduce an
additional notion.

RELSEP for a given class of inequalities. Given a
graph G : (V, E), connectivity types r, € 10, l,2l for
all u e V, and values y" > 0 for all e e E. (The

inequalities in the given class are supposed to be ofthe

form arx > b with b > 0.) Decide whether y satisJies
all inequalities of the given class and, if not, find an
inequality a'x > b ofthe class such that (b - ar y)lb

is maximized.

We first show NP-hardness of RELSEP for our
various classes of inequalities by reduction from the
3-way cut problem. NP-hardness of the 3-way cut
problem was shown, or rather indicated, in an
extended abstract ofDahlhaus et al. (1983).

For a graph G : (V, E) and three different nodes
.e1, J2, J3 (called special nodes), a 3-way cut is an edge
set C C E, such that s1, sz, s: ilr€ in diflerent compo-
nents of G - C.If W1, W2, Wt e V are a partition of

4 such that  sr  c  Wiand st  4 Wifor  i ,  k  e 1 i1,2,3} ,
i * k, rhen Ut, 6( W,) is a 3-way cut; moreover, every
3-way cut clearly contains such a special 3-way cut.

The problem of determining a minimum 3-way cut in
a graph. Given a graph G : (V, E) and vertices s1, s2,
sz c V, determine a 3-way cut C e E of minimum
cardinality.

Theorem 7. RELSEP for partition inequalilies (8) is
NP-hard.
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Proof. Suppose that we have an instance of the 3-way

""i p-Uf.. given by G : (V, E) and three special

;;;;;, sr, ind s:' we transform this instance into

"ri"""ti.. "f RELSEP for partition inequalities' First

;;;;; standard min-cut algorithm to determine'

for i : 1,2,3, a cut 6('Sr) of minimum cardinality

with si e Si that separates s, from the other two special

nodes.Wemayassumethat I D(sr) | < | 6(s') | <.1 6(St I'

W. ..t r(sr) : r(s2) : r(s3) :: I and r' ::-0 for all

;;.;;"i"; u and define !'" :: I for all e.€ .E 
Note

that finding a 3-way cut of minimum cardinalitv in G

i. .otit"fJtt to dnding I nartili-o-,..inequalitv (8)

*i tr- : 3, such thatt/zD3i=r y'$(W)) is as small as

possible.
Next, we construct a graph G' from G by adding

t*o eOges s1s2 ofld sts: with /'(s's')- = y'('trs3) ::

iut t l t - -  l6(s1) l  + i  ( : '  k) '  wi th the addit ion of

tfr*" .ag.t, the ieft-hand side of a partition inequality

i^tii*lirt p : 3, namelv th}?=r !'(Y)' ischanged onlv

tv ,tt. .i*, ant 2k. ihe number k is chosen so that

iisrl it the minimum cut in G' (with respect to the

capacities y') disconnecting any t*o-tq"j3l nodes'
- 

il" no*.ull the algorithm for RELSEP with input

Ci , i, 'un1 y :: y' ltiy'. By our definition, v violates

att' partition inequatities' So the algorithm for

RELSEPwilloutputone.Ifitisapartitioninequality
iil;t,n P : 3, then clearly the three sets of the

pu.tition ietermine a minimum cardinality 3-way cut'

iil;;; partition inequalitv with p : ,?'*" 
know that

fo, u ,nini-um 3-way cut of cardinality' say c (in G)'

^ , a | .'_:= > l6c(.tr)l + k.
L

T h i s i m p l i e s  t h a t c >  2 1 6 ( 5 , ) l  >  1 6 ( 5 l u 6 ( S ' � ) l '

si*" its,l u D(&) is also a 3-way cut in G' it must be

u -ini-ua one. In either case' we have found a

minimum 3-way cut of G' So RELSEP for partition

inequalities (8) is NP-hard'

NP-hardness of RELSEP for lifted 2-cover and

noJe partition inequalities can be shown in a similar

way.

Theorem 8. RELSEP for node partition inequalities

tO), trftra 2'cover inequalities (5)' and partition ine-

qualities (3) is NP-hard'

The following result shows that with an exact sepa-

ration algorithm, for any class of inequalities with

"".tuln pioperties, we can solve (in polynomial time)

theassociaiedRELSEPproblem.Theproofusesthe
foiynomial-time equivalence relationships between

certain algorithmic problems established in Grotschel'

Lovdsz and Schrijver ( I 988)'

Theorem 9, Let aT x> bi ,  i  :  l '  " ' '  f f i '  be a system

of ini iuot i t int  in Rl "  with b i  > 0 for i  :  l , ' ' ' '  m' Then

in, piottn* of separating nonnegati.ve vectors from

tt ii r'r' t o s of i ne quit t t i e s i s p o ly nom i al- t i m e e quiv a I e nt

10 RELSEP/or the same class'

Proof. Without loss of generality' we may assume

,ft"irft. class of inequalities is given by aTx > I for
' i  
:  t , ,  . . ,  m.Le t  €1 ,  i  :  1 ,  " ' ,  h ,be  the  un i t  vec tors

in mi witfr the ith component equal to one and all

other components equal Io zero' Given y > 0' the

answer to inr-SEp can be found by solving

minimize urY

subject to

u e  P '  : :  c o n v { a r ,  . . . , a ^ l *  c o n e { e 1 ,  " ' ,  € n \ '

Note that this optimization problem can be solved

urinl,rt. ellipsoid method (see Grotschel' Lov6sz and

;;lti"..l if there is an oracle testing membership

for P'.It is easy to see that u € P' if and only if

ix > t is valid for the polyhedron P ": lx I alx >- | '-i: 
t . . . , ffi', x> 0l' Finally' the validity problem for

P can be reduced to separation over P' aeain by using

a result from Grotschel, Lovdsz and Schrijver' There-

fo* u polynomial algorithm for the problem of sep-

"i"ii"g'nonnegatiue vectors can be used to solve

RELS-EP in polynomial time' The reverse direction

is triviallY true.
This proves the following corollary'

Corollary. The separation problems associated with

the clasies of partilion inequalities (8) for the Steiner'-ttrie 
potytope, partition inequalities (3)' nole partition

-iirequaiitiis 
1i1, and lifted 2-cover inequalities (5) are

NP-hard.

4.3. Heuristics lor Separating Partition

Inequalities

Let (G, r) satisfy (2), and let y be some. Foint in.R"

with O ( .y" < l. Our aim is to hnd a partttron

inequalitv viotateO by this point' By the results of

Section 4.2, it seems hopeless to find an eflicient exact

algorithm for the separation of partiti-on inequalities'

th'erefore, we have io tt" heuristics' Nevertheless' it

it pottiUi. to solve the separation problem for the

cut constraints (1a) in polynomial time' So' in our

treuristics we often use "almost violated" (cut)

inequalities and transform them into violated parti-

iion inequalities. Here, an almost violated inequality



I
I

is an inequality arx > b with a'y < b * a for some
"small" parameter a (we used a : 0.5); arx > b is a
violated inequality; if ary < b.

The heuristic that we applied has the following
general form.

Heuristic 1. Finding Violated Partition lnequalities

Step l. Shrink all or some edges e € E with the
property that any violated partition inequality using
this edge can be transformed into some at least as
violated partition inequality not using this edge.
("Using e" means: e has a coeffrcient of I in the
partition inequality.)

Step 2. Find some violated or almost violated cut
constraints in the resulting graph.

Step 3. Attempt to modify these cut constraints
into violated partition inequalities.

We will explain our shrinking criteria of Step I in
Section 4.4.Here we will specify Steps 2 and 3 of the
general heuristic.

In Step 2 we apply the algorithm of Gomory-Hu
( 196 I ) to graph G with costs J, to hnd a cut 6( ltrl) with
minimum cost y(6(W)). This algorithm produces the
so-called Gomory-Hu tree with the property that for
all pairs s, / of nodes the minimum [s, l]-cut in the
tree is also a minimum [s, r]-cut in G. Gusheld (1987)
described a version ofthis algorithm that is very easy
to implement. It consists of solving lvl - I maxi-
mum flow problems on the graph G in a certain order.
As with our max-flow routine we used the algorithm
of Goldberg and Tarjan (1987) in an implementation
we obtained from R. Ahuja. This code is the fastest
max-flow algorithm available to us.

In Step 3 we are given some violated or almost
violated cut constraint 46(W)) > con(W) derived
from the Gomory-Hu tree.

In many cases, the given cut inequality does not
define a facet because GlWl contains a bridge e (a so-
called Steiner bridge), so that GVn - e has two
components with node sets Wr and W2 both con-
taining nodes of type I or 2; i.e., the condition
Xt(GUA) > 2 of Theorem 2a or b is violated. In such
a case, the cut constraint x(6(Vn) > 2 can be written
as the sum of a partition inequality with partition

lW,, W4 V\Wl and the trivial inequality -x" >- -l
(see Figure 7).

If the cut constraint is violated, the partition ine-
quality is also violated. So, instead of adding the cut
constraint to the LP, we add the partition inequality,
which defines a face of hieher dimension than the
original cut constraint.
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W t -

a ,
W z -

w v\tv

Figure 7. Splitting a cut into a partition.

There is also a practical reason for doing this: Using
facets as cutting planes usually results in a more radical
change in the structure ofthe fractional solution than
using lower-dimensional faces. This is illustrated by
the following example, which actually occurred in our
computations. (See Figure 8, where solid lines denote
l" : l, and dashed lines denote y" : Vr.) Here, the
point y shown on the left violates the cut constraint
x(6(lu, ul)) > I, which is implied by the partition
inequality with partition llul, lul, V\lu, uf f . When
the cut inequality was added to the LP, the point y on
the upper right was produced (satisfying the cut ine-
quality but not the partition inequality), but when the
partition inequality was added instead of the cut ine-
quality, the point y on the lower right was produced,
which looks (locally) feasible.

Also, the LP value changes more dramatically when
we tested our cut constraints for Steiner bridges. For
instance, in one problem, we obtained a lower bound
of 1,419.65 using only cut constraints. After this, no
more violated cuts were found. Using cut constraints
and testing for Steiner bridges made the lower bound
jump up to 1,474; the optimal value was 1,489.
So facet characteizations do have some practical
implications.

Another way of transforming a cut inequality
x(6Qn) -- con(LV) into a partition inequality is to
split W into separate node sets {wf for each w € W.
This requires that all nodes in W have a connectivity

---{}--o
_ _ ! g , /  i 6

t l__n 6 \ _T_1
--{ c

Figure 8. Using the partition instead of the cut
inequality.

Wr

v\we

)
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type greater than O.-lf there are nodes of type 0 inW'

we associate each ot them with a node of type at least

l. This is done the following waY'

Heuristic 2. Partitioning a Node Set W lnto Sets lt/'

with r(w) > 1

Given (G, r), a node set W'and a point I € Ro'

SteP 1. Set G' : :  GUIlandW' ". :  W'-" .-

Step 2. As long u' ittti" are nodes u of type 0 in

w ' d o :
ntil'n.igttbor w of u in G' with w e W and y'" as

large as Possible'
Shrink edge uw to no<le w with connectivity type r"''

Identify parallel edges uw (by adding their y values)'

Step 3. For each ''- eii ' set Wi:: the subset of

Iy' rePresented bY w;'

A drawback of Heuristic 2 is that an inequality with

;;; t;;;"ro coeffrcients is created wfren tr4zis large'

i" *.'"* i only for "small" sets I/' say' with not

iriore-than seven nodes oftype at least I'

Usually, our routinls for sptittittg l/work well only

in the hrst few iterations ol the cutting plane algo-

rithm, because after a while the cuts produced in

Step 2 of Heuristic I are only degree constraints of

the form x(6(w)) > r"'

So we also employ a heuristic that enlarges tht:1:i:

of un (utrnort) violated cut D(t'l by adding a 
:ertat:1

branch of the Gomory-Hu tree'-That is''a node w ts

determined that is aljace nt to W by an-edge of "high"

y; value. The subtreeiof tttt Corno"-H.l T""),111,1t^1't"''., 
t i, then added lo set W'Now the splitting routlnes

:lJt': "ttit.ii" ttto a"'iut some partition inequal-

iii.t tttui hopefully are violated'

The Gomory-Hu algorithm (with aboul O(no) worst

.ur.-iunning iime) tnuv become very slow for large

;;ilt;.";se I I/l - i max-flow problems have to

be solved. In the next section' we explain-h-ow problem

sizes can ue t"ot"eJbefore the Gomory-Hu algorithm

is aPPlied.

4.4. Shrinking Criteria lor Partition Inequalities

One very use{ul method to decrease problem sizes for

In.-r"pu.u,ion of puttition inequalities'is to shrink

those edges e oi thJ cunent fractional. solution -v with

the property thai-any violated O""l1t"-t inequality

using e can be transftrmed into another at least as

violated partition inequality not v.srng e' 
,

Here we p"'"ni "uttui conditions for shrinking

"agr, ": u,, depending on the value-y"' the connec-

,lu"i r ryo., ,uund ',,uttI tnt values y(D(u)) and {6(u))'

When shrinkl"g igt "' edges aw and rrw are identi-

fied and the y-values are added' The connectivity

it* "i1rt. shrunk node is set to min [r(I/\{u' ul)'

max(r,,, r,)|.
Foreachshrinkingcriterion'wegiveaproofofwhy

ttr.rl.^J" p"rtitionlnequalitv.not ":i"g 
:,lYt 

it ut

i.un u, violated as a partition inequality uslng e'

Criterion l. Y"> k": max(r"': w e l)'

Proof. Suppose that lW" '" ' I4zo| induces a'riolated

partition inequalrty with a € Wr and u e ̂ Wz' 
The

ffiil; i".ot"iitt has a right-hand sideof p - I if

all nodes of type 2 are contiined in one W' lf p >- 3'

;;^;;;t t' v w', w" ' ' ' ' w'also induce.a partition

it.ot"ti t. The ieft-hand side decreases by at least

v" > k', the right-hanJ side decreases by 11 
most k'

i"i*n"i"ti-[: i, it mav happen tlh.ar trt ::!^Y:
lt. irt. only node sets in the partition contarnlng

nodes of type 2' fn tf'tit case' the right-hand side of

\W, u Wt, wr, . ' ' , Wn\ decreases by two') So the

new partition inequality is at least as violated as the

"itri"i"".'ano li ooes not use edge e' Ifp: 2' then

lW,, . . . , Wol does not dehne a violated partition

inequalitY.

Criterion 2. !"7 r, and y" > y(6(v)) - y"'

Proof. Suppose that \wt' wt' " ' ' w"\ induces a

".f"r.Jo""ition inequality with u € Wr and u € Wz'

l f  r , :2 '  Cri tenon 2 is the same as Cri ter ion 1'

ii ,, = 1, and I'llz contains (besides u) some other

node of type at least 1' we can t"9-11:t. ll/" Wz'

. . . ,W, \bY lWt  u  iu | ,  t t l ' \ {u \ '  'T ) ;The d i f fe r -

ence in the left-hand''idt btt*"tn the first and the

second Partition inequalitY is

y([ [u] :  w]) -  v([ lu] :  w' l )  > v" -  (v(D(u)) -  ] ' )  > 0'

The right-hand sides do not differ' as f4r' U {u} and

i"rtf ri tritt contain nodes of type 2' Therefore' the

second partition inequality is at least as violated as

the frrst, and it does not use e'

The above transformation does not work if r' : I

and Wrcontains (besides u) only node.s-of type 0' But'

the partition lntquutitv induced !t IO:"Y Y::t!:;
i,\ tt at ieast as violated * ,*: ,1":1ttl

i;,;i'[ ;d*J;r \w,. yi. ] :,,fr]-'j,,1^:*
iii: i,ir'. partition .{9r cu1),in13:"1'y l:::""t ll
\"i,, ti.l';;'il;;; "lttatea' because it has a right'

hand side of 1.

4.5. Separating Node Partition lnequalities

Let (G, r) be an instance of the 2NCON problem and

il-r;. some point in Rt with 0 ( '1"' < I for all

e E E. Our aim is to hnd a node z and a partition



lWt, . . . ,  Wol of V\ lz l ,  such that the node part i t ion
inequality induced by z and IW,, . . . , Wol is violated
by y. The candidate nodes z are determined as the
articulation nodes of the graph G' :: (V, E'), where
E' contains all edges of a y-value of at least th. Once
this is done, a partition of V\lzl is found as follows,
using principally the same ideas as for the separation
of partition inequalities.

Heuristic 3. Separating Node Partition lnequalities

Given (G, r) and a point y e RE.

Step 1. For all articulation nodes z of graph G'
separating at least two nodes of type > 2, dol.

Step 2. Shrink all (or some) edges e of G - z with
the property that any violated node cut inequality
using this edge can be transformed into some at least
as violated node cut inequality not using this edge.

Step 3. In the resulting shrunk graph G" (not con-
taining z) frnds some cuts 6o"Ul) with y(6G.(W)) <
I * a, where a t: t/2,

Step 4. Attempt to transform one shore (W or
V\rn of such a cut 6c"(W) into violated node parti-
tion inequalities of G.

The shrinking in Step 2 is done by criteria analogous
to the criteria used for partition inequalities described
in Section 4.4.

The cuts in Step 3 are found by using the Gomory-
Hu algorithm. The transformation of cuts 6(1il) into
violated node partition inequalities in Step 4 is done
by splitting W exactly as in Heuristic 2. Here V\W 1s
the shore containing the node u with the highest value
Y(6c,(u)).

4.6. Separating Lifted 2-Cover Constraints

The separation problem for lifted 2-cover constraints
(5) is NP-complete, but there exists an efficient
(polynomial-time) algorithm for separating 2-cover
constraints (6). This exact separation routine is a
straightforward modification of the algorithm of
Padberg and Rao (1982) for the separation of
I -capacitated b-matching constraints.

The Padberg-Rao algorithm achieves the following.
Given positive integers b, for all u € V and a vector
i € Rf with y(6(u)) < b, for all u € Z, it finds a node
set 11 c V and an edge set T C 6@) with ),.n b, +
| 7l o0O such that the value

b " + l T l -
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We now describe how this algorithm is applied to
our case. We are given (G, r) and some vector y ) 0
satisfying y(6 (u)) > r, for all u. Suppose for the momenr
that the node types r, take only values of 2. The
Padberg-Rao algorithm applied to bu:: l6(u)l - 2 (for
all u € Q and y :: | - y finds (rewriting (9) appro-
priately) a node set Iland an edge set fc d(,FI), such
that T:: d(11)\7 is of odd cardinality, and

y(E(H)) + /(6(H)\z) - lHl + (l rl - t)/2

is minimal. Comparing this with the 2-cover inequal-
ity (6) we see that in the case when all node types are
2, the Padberg-Rao algorithm can be used to separate
2-cover inequalities exactly.

Ifthe node types are 0, 1, and 2, the Padberg-Rao
algorithm is applied to bu i: | 6(u) | - r, for all nodes
u of types 0 and2, b, :: I D(u) | - 2 for all nodes u of
type 1, and y:: I - y. This setting may violate one
of the necessary conditions for the application of the
Padberg-Rao algorithm, namely y(d(u)) < D, for all
u € V. We ignore this and use the Padberg-Rao
algorithm to get a node set H and an odd-cardinality
edge set ?":: 6(11)\7 such that

y(E(H)) + /(6(11)\r) - lH n V,l

+ f l  7"1 -  t ) /2 (10)

is of (hopefully) low value, where V1 :: lu E V I r, >
1|. This expression may not correspond to a lifted
2-cover inequality (5) if H contains nodes of type 0,
so, to find such an inequality, we use Heuristic 2
to partition 11 into node sets H6 each containing ex-
actly one node of a nonzero type. There is, however,
no guarantee that a violated, lifted 2-cover inequality
is produced, even ifone exists.

A sketch of our heuristic for separating lifted
2-cov er constraints follows.

Heuristic 4. Separating Lifted 2-Cover Constraints
Given (G, r) and a point y e RE.

Step /. Shrink one-paths, as described in
Section 4.7.

Step 2. Using the Padberg-Rao algorithm, find 11,
f with "low" values of (10).

Step 3. Try to transform each H and T found in
Step 2 into a (hopefully violated) lifted 2-cover con-
straint, as described in Section 4.8.

In the remaining sections we will give some further
details for Steps I and 3.

i ( 'z yueH

\ _t ) - r (E (H ) ) - r ( n

is minimal.

(e)
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4.7. Shrinking One'Paths

We can shrink some edges according to 9lttti.u 
similar

to those used for tfre se-paration of partition inequali-

;il.-il;"t such shrinking criteria are known for the

iip-i"t.'t*ch as altern-ating paths and one-paths'

tr.. p"otU.ltt and Grotschet i98s' and Padberg and

Rinaldi 1990) but not all apply to our two-connected

;;.-F"t instance, the concept of alternating paths

;;; ;;, carry over because in our case the degree

iot"rl*t ttj 6)) : zare not necessarily satished' But

we can shrink certaln one-paths' i'e'' paths P' where

all edges e € P have !": I and all nodes u € P (except

the eidnodes) satisfY Y(6(u)): 2'

All one-paths between'two nodes of type 2 may be

,h;;k t" a single edge e having weight^y": 1' Also'

all one-paths where one endpoint is of type one or

,.ro, und has at most two incident edges with nonzero

weight (for instance, the leaf of a tree of one-edges)'

ili u. ,rtrunk into a single node (see Figure 9)'

4.8. Converting Odd Cuts into Lifted 2'Cover

Constraints

Suppose that we have found H I V and an odd subset

Tliitlll such that (10) has u "191.'value' our aim

is to transform this into a (hopefully violated) lifted

2-cover constraint'
We choose H or V\H (usually we try both) as the

handlsof the lifted 2-cover inequality' and- we use the

gJ." t", I as its teeth' Using Heuristic 2 we hnd a

p""ill"" of ly' into node sets fli ' i : l ' ' ' ' '  p' each

iontaining at least one node of a type at least 1 '

We still have to adjust the lifted 2-cover inequality

to meet the requiremlnt that no more than one tooth

is incident to a set H' with r(Hi) : 2, .?ld 
that no

tooth is incident to a node set 11' with r(//t) : 1' yu'"

do this in the following waY:

. If exactly two teeth are incident to a node set ly'r' we

set Il :: l/ \l/i and T :: 7\6(/{')'

If I Il : I we discard the current lifted 2-cover

inequalitY.
. If more than two teeth are incident to some /1;' or

if ,orn. tooth is incident to IIi with r(I/;) : 1' we

also discard the current lifted 2-cover inequality'

We now give a short description of what we imple-

,..ti.I "r ihe separation routines listed above' First'

;;;;;;;.;redihe comory-Hu algorithm for sepa-

rating the cut constrarnts' (This is an exact algorithm')

;i;;*. observed that many cut constraints were too

*."t tlt the sense that they did not defrne facets)' we

implemented the test for Steiner bridges and' as an

;j;;;;;ii;., Heuristic 2' ro reduce the graph sizes to

*fti.ft tft. Gomory-Hu algorithm is applied' we im-

oi.*.ii.O the various ttttintlng criteria outlined

above. Some of the routines used for the separation

;;;il;; inequalities, like the Gomory-Hu alBo-

litr* H.ttlstic 2, and some of the shrinking proce-

;;;we-re also uieful to separate node partition and

ii,J'z-.ou.. constraints' So we actually put all these

ideas to work in our implementation'

5. COMPUTATIONAL RESULTS

The aim of our work was to develop a cutting plane

;G;;- that solves problems of the tvpe and size

,rr"ui .orn. up in the design of survivable telephone

networks in hber optic te;hnology' We knew before-

h""Jrn" the number of hubs (nodes) considered in

pt".ii.A applications is relatively small (at most 200)

ItO itt" the networks (graphs) of possible direct hber

iitr.tl.og*l are quite 'puttt' Thus' we had good hopes

that the preprocessrngand LP-relaxation^techniques

would provide very g--ood lower. bounds for the true

optima in short computation- tiT: Wt 
1ow 

report

io* *.il our cutting plane algorithm performed on

these Problems'
To test our code, network designers at Bell

Communications Research providedlhe data (nodes'

possible direct linrs, costs for :*"bt:1119. 
a link) of

7 real networks that were considered typical for this

typ" of application' The sizes ranged from 36 nodes

and 65 edges to 116 nodes and 173 edges; see

Table I. The problem instances LATADL' LATADS'

and LATADSI'are defined on the same graph G' The

edges have the same costs in each case' but the node

,vi., uury. Moreover, in LATADSF' 40 edges were

' .0**oiobeinthesolut ion.(Thepurposeofthese
;;.* variations was to see how the cost would

irr""r.- "ro.r different scenarios. This approach is

itpii^irv used in ptuctice' where several alternative

solutions u.. ""'uily investigated before the planner

selects a final solution')
Table I provides iniormation about the problems'

Column I contains ihe problem names' For the orig'

inal graphs, columns 2' 3' and 4 contain the number

of nodes of type 0, 1, a"d 2' respectively; column 5

lists the total number of nodes' column 6 the numbet
>G---o<

Figure 9. Shrinking one-Patns'
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Table I
Problem Descriptions for the Original and Reduced Graphs

Original Graph Reduced Graph

Nodes Edges Nodes Edges

LATADMA
LATAl
LATA5S
LATA5L
LATADSF
LADADS
LATADL

0
8
0
0
0
0
0

1 5  2 l
t4 24
8 2 3
9 2 9

l l  3 9
l l  3 9
28 39

36
77
39
46
l 6
l 6
l 6

12 24
65  14
3 1  8
36  l 0

108 8
108 8
84 32

6s/0
t12 /0
1r /0
98/0

t73/40
t73/0
r73/0

0 6
0 1 0
0  1 5
0 2 0
0 2 8
0 2 8
0  l l

46/4
4812
50/0
'7'7 

/ |
86/26
86/3
86/6

of edges and the number of edges required to be in

any solution (the forced edges). All graphs were ana-

lyzed by our preprocessing procedures described in

Section 2. Preprocessing was very successful. In fact,

in every case, the decomposition and fixing techniques

ended up with a single, much smaller graph obtained
from the original graph by splitting offside branches

consisting of nodes of type 1, replacing paths where

all interior nodes are of type 2 by forced edges, etc.

The data of the resulting reduced graphs are listed in

columns 6, . . . , l0 of the table.
To give a visual impression of the problem topolo-

gies and the reductions achieved Figure l0 shows a
picture of the original graph of the LATADL problem

(with 32 nodes of type2 and 84 nodes of type 1), and

Figure 1l is a picture of the reduced graph (with

39 nodes and 86 edges) after preprocessing. The

nodes of type 2 are displayed by squares, and the

nodes of type 1 are displayed by circles. The six forced

edges that have to be in any feasible solution are

drawn in bold.
LATAI is a 2ECON problem, while the other six

instances are 2NCON problems. All optimum solu-

tions of the 2ECON versions turned out to satisfy all

node-survivability constraints and thus were optimum

solutions of the original2NCON problems-with one

exception. In LATASL, one node is especially attrac-

tive because many edges with low cost lead to it. This

node is an articulation node of the optimum 2ECON

solution. In the following, LATASLE is the 2ECON

version of LATASL.
We now provide some details of our algorithm and

its implementation. In a preprocessing phase we try

to decompose and reduce the given problems using

the methods described in Section 2.The result of this
procedure is a graph (or a list of graphs) that is not

decomposable. The cutting plane algorithm is called

for each such graph.
Our cutting plane algorithm follows the standard

approach (see the Cutting Plane Algorithm). We use

the framework of a (general) branch-and-cut algo-
rithm that is currently being developed by Michael

Jtnger. The LP-solver used is a research version of
the CPLEX-code provided to us by Bixby ( 199 I ). This
is a very fast implementation of the simplex algorithm.

Since the number of variables of our test problems

is relatively small, we do not employ any techniques
(other than preprocessing) to eliminate variables from
a current LP.

In 5 of the 8 test problems, the cutting plane algo-
rithm produced an optimum solution. The other three
cases were solved by branch and cut. This consists of
choosing a branching variable, setting some variables

to their upper and lower bounds according to their
reduced costs and some logical implications, and find-
ing new cutting planes for the modified problem. The

branch-and-cut tree is traversed in depth-first search
fashion. We did not run heuristics to provide a good

initial upper bound for the enumeration phase or to
turn fractional solutions into feasible integral solutions
to improve the intermediate upper bounds. We simply
wanted to test the general method (developed by
Michael Jiinger) for this particular case. It did, as
Table II shows, quite well. Clearly, considerable
improvements can be achieved by implementing
problem-specific modifications and adding various
heuristics. We do not go into further details of the
branch-and-cut procedure because this is very techni-
cal (and even a rough outline would require a lot of
space) and the emphasis is on the cutting plane algo-
rithm in this paper.

Our code also contains an option to add further
cuts manually. For instance, we were able to solve
LATASL by manually adding partition, node parti-

tion, and 2-cover inequalities that could not be found

automatically; for LATADL we had to use, among

others, a certain inequality to achieve the optimal
solution without branching, and the best lower bound
for LATADS that we could reach by adding any valid
inequalities known to us is still one unit away from
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Figure 10. original glaph of the LATADL problem'

the optimal value. So our polyhedral description of

iicriNtc; r) and 2NCON(G; r) is good eloueh to

u.f,i.n. very good lower bounds, but not sufficient to

J*uv. ftnA tt optiqral solution without resorting to

an enumeration phase like branch and cut'

Table II contains some data about the performance

ofo". code on the 8 test instances' The entries from

left to right are:

IT the number of iterations (: calls of the LP

solver);
P the number of partition inequalities (3)

added to the initial LP (7);

NP the number of node partition inequalities (4)

added to the initial LP (7);

2C the number of lifted 2-cover inequalrttet

added to the initial LP (7);

C the value of the optimum solution after

mination of the cutting plane phase;

COPT the oPtimum value;

GAP 100 x (COPT - C)/COPT (: the

T

relative error at the end ofthe cutting

phase);
ttt. totut running time including input'

put, preprocessing, etc. of the cutting pll

ptruti tnot including branch- ̂and 
cut)'

rounded seconds on a SUN 3/60
(a 3-MIPS machine);

BN itt. number of branch-and-cut
generated;
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Figure 11. Reduced graph of the LATADL problem.

Table II
Data for Eight Test Problems

NP 2C C COPT GAP T BN BD BT

3 5 1,489.00 1,489 0.00 7
0 l 4,296.00 4,296 0.00 6
0 0 4,739.00 4,739 0.00 6
0 0 4,574.00 4,574 0.00 6
8 l 4,679.00 4,726 0.99 20
0 0 7,647.00 7,647 0.00 9
0 2 7,300.00 7,320 0.27 22
0 28 1 ,378.25 7 ,400 0.33 3l

Problem IT

LATADMA II
LATAI 4
LATAsS 4
LATASLE 6
LATAsL 16
LATADSF 6
LATADS 9
LATADL 14

1 9 7 8 0

20 6 rr2
6 3 6 9

49
43
53
67

128
26

187
160



328 / GndrscsEl, MoNrue lNo Sronn

Table III
Running Times for the Cutting Plane Algorithm

Time/
Problem PREPT% CWfITo LWTo MTTo Time Red

37.r 39.0
20.2 22.3
r5.4 33.3
34.5 49.3
49.0 44.2
29.3 r5.4
33.1 59.7
59.9 35.1

BD the maximum depth of the branch-and-cut
tree;
the total running time of the branch-and-cut
algorithm including the cutting plane phase,
in seconds.

BT

We think that it is worth noting that each of this
sample of real problems, typical in size and structure,
can be solved on a 3-MIPS machine in less than two
minutes, including all input and output routines,
drawing the solution graph, branch and cut, etc.

A detailed analysis of the running times of the

LATADMA
LATAI
LATAsS
LATA5LE
LATASL
LATADSF
LATADS
LATADL

23.2 7 8
56.3 6 2r
50.7 6 9
t5.7 6 t4
6.4 20 43

s4.6 9 25
6.8 22 l3 l
4.7 31 109

0.7
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0.6
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Figure 12. Solution of the LATADL problem.



cutting plane phase is given in Table III. All times
reported are in percent of the total running time TIME
(without the branch-and-cut phase). The entries from
left to right are:

PREPT the time spent in the preprocessing
phase (in percent);
the time spent in the separation rou-
tines (in percent);
the time used by the LP code CPLEX
(in percent);
the miscellaneous time for input, out-
put, drawing, etc. (in percent);
total time (in seconds);
the total time (in seconds) of the algo-
rithm when applied to the original in-
stance without prior reduction by
preprocessing.

CUTT

LPT

MT

TIME
TIME\RED

The last column TIME\RED shows the running
times of the cutting plane phase of our algorithm
applied to the full instances on the original graphs
(without reduction by preprocessing). By comparing
the last two columns, one can clearly see that substan-
tial running time reductions can be achieved by our
preprocessing algorithms. Reduction pays.

A structural analysis of the optimum solutions pro-
duced by our code shows that-except for LATADSF,
LATASL, and LATAl-the optimum survivable net-
works consist of a long cycle (spanning all nodes of
type 2 and some nodes oftype l) and several branches
connecting the remaining nodes of type I to the cycle.
The optimum solution of LATADL is shown in
Figure 12, with the 2-connected part (the long cycle)
drawn in bold.

We ran a few tests on randomly generated problems
of higher density. Here our code performed reasonably
but not as well. (That is not of great importance
because our goal was to solve real-world and not
random problems.) More serious is a dramatic in-
crease in running time when many nodes of type 0
are added. In this case, it takes very long before the
intermediate fractional solutions become connected.
We think that for such cases new separation heuristics
have to be developed that perform a more sophisti-
cated structural analysis of the given instance. But the
problems that we address here and that come up in
the design of fiber optic telephone networks have very
few, if any, nodes of type 0.

Our computational experiments show that our ap-
proach produces very good lower bounds and even
optimum solutions in the initial cutting plane phase
for problem instances that are sparse and do not have
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Table IV
Comparison of the CHEUR and COPT Solutions

Problem CHEUR GAP

1,489
4,296
4,739
4,574
4,726
7,647
7,320
7,400

r,494
4,296
4,739
4,574
4,794
7,727
7,361
7,460

0.34
0.00
0.00
0.00
t.44
1.05
0.56
0.81

too many nodes of type 0. This work is a good basis
for the design of a production code for the 2ECON
and 2NCON problems coming up in liber optic net-
work design and a start toward problems with higher
and more varying survivability requirements and
larger underlyng graphs.

Another motivation for our work was to find out
how well the heuristics developed in Monma and
Shallcross perform. They do very well. Table IV com-
pares the values CHEUR of the solutions produced
by the heuristics with the optimum values COPT
computed by our code. The percent relative error GAp
(: 100 x (CHEUR - COPT)/COPT) is always below
1.5%.ln three cases the heuristics found an optimum
solution. This result justifies the present use of these
heuristics in practice. They are part of the ..FIBER

OPTIONS Software" marketed by Bellcore (1988).
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