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We describe a cutting plane approach to the problem of designing survivable fiber optic communication networks. This
problem can be formulated as a minimum cost network design problem with certain low-connectivity constraints.
Computational results on real-world telephone network design problems demonstrate the effectiveness of our cutting
plane method. The facet-inducing inequalities for the convex hull of the solutions to this problem on which our algorithm

is based are studied in detail in a companion paper.

Survivability is a particularly important issue for
fiber optic communication networks. The high
capacity of fiber facilities results in much more sparse
network designs with larger amounts of traffic carried
by each link than is the case with traditional band-
width-limited technologies. This increases the poten-
tial damage to network services due to link or node
failures. It is necessary to tradeoff the potential for
lost revenues and customer goodwill against the extra
costs required to increase the network survivability.
Recent work on methods for designing survivable fiber
communication networks by Cardwell, Monma and
Wu (1989), and Monma and Shallcross (1989) con-
cludes that “two-connected” topologies provide a high
level of survivability in a cost effective manner, and
that good heuristic methods exist for quickly generat-
ing “near-optimal” networks. In particular, it was
determined that a network topology should provide
for at least two diverse paths between certain “special”
offices, thus providing for protection against any single
link or single node failure for traffic between these
offices. These special offices represent high revenue
producing offices and other offices that require a
higher level of network survivability.

Our paper presents a so-called cutting plane algo-
rithm for computing a minimum cost network that

satisfies the survivability conditions described above.
The costs considered here are only those needed for
establishing the network topology, such as placing
conduits in which to lay fiber cables, placing the cables
into service, and other related costs. We do not con-
sider routing, multiplexing, and repeater costs. Com-
putational results show that our algorithm can
compute, within a few minutes, minimum cost sur-
vivable telephone networks of the type and size arising
at Bell Communications Research. We could also
show that the heuristic solutions reported by Monma
and Shallcross (on certain real-world instances of tele-
phone network design) are actually near-optimal.
The cutting plane approach used in our algorithm
is based on optimization over the convex hull of the
solutions to the survivable network design problem,
the so-called 2ECON or 2NCON polyhedron. A gen-
eral, integer linear programming approach to network
design problems with connectivity requirements is
presented in Grotschel, and Monma (1990) along with
a preliminary study of these problems from a polyhed-
ral point of view. Several classes of facet-defining in-
equalities for the 2ECON and 2NCON polyhedron
were identified in our companion paper (Grotschel,
Monma and Stoer 1989). The present paper is based
on the theory developed in Grotschel, Monma and
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Stoer (1989), and we shall make several references to
these results in what follows. A special case, where at
least two edge-disjoint paths are required between all
pairs of offices, is investigated by Cornuéjols, Fonlupt
and Naddef (1988), Mahjoub (1988), and Monma,
Munson and Pulleyblank (1990) from the polyhedral
point of view.

Section 1 introduces graph-theoretical notation and
an integer linear programming model of the survivable
network design problem with low-connectivity con-
straints. In Section 2, we describe an approach for
decomposing the network design problem into smaller
problems that can be solved independently of each
other. In Section 3, we summarize the classes of facet-
inducing inequalities from Grotschel and Monma,
and Grotschel, Monma and Stoer (1989) that we use
in our implementation. The details of the implemen-
tation and the heuristic and exact separation algo-
rithms used to generate violated inequalities are
described in Section 4. Computational results on real-
world telephone network design problems are pre-
sented in Section 5, and compared to results obtained
by the heuristic methods in Monma and Shallcross.

1. NOTATION AND DEFINITION OF THE
ASSOCIATED POLYHEDRA

The problem of designing survivable fiber optic
communication networks can be modeled as a
minimum cost network design problem with certain
low-connectivity constraints. More precisely, we are
given a graph G = (V, E), where V/ is a set of nodes
that represents offices that must be interconnected by
a network, and E is a collection of edges that represent
the possible pairs of nodes between which a direct
transmission link can be placed. The graph G may
have parallel edges but contains no loops. Each edge
¢ € E has a nonnegative fixed cost c. of establishing
the direct link connection. The cost of establishing a
network N = (V, F) consisting of a subset ¥ C E of
edges is ¢(F) := Yeer Ce, the sum of the costs of the
individual links contained in F. The goal is to build a
minimum cost network so that certain survivability
conditions, which we describe below, are satisfied.

The survivability conditions require that the net-
work satisfy certain edge and node connectivity
requirements. In particular, a nonnegative integer f;
is associated with each node s € V that represents its
connectivity requirement. This means that, for each
pair of distinct nodes s, ¢ € V, the network N =
(V, F) to be designed has to contain at least

r(ss )= minfr; i}

edge-disjoint (or node-disjoint) [s, {]-paths. We call r;
the connectivity type of node s, or the type of node s.

In the remainder of this paper we consider the
important, practical case where the connectivity
requirements satisfy r, € {0, 1, 2} for all s € V.
This includes the problem of designing survivable
fiber optic telephone networks (Cardwell et al.
1988, Cardwell, Monma and Wu 1989, and Monma
and Shallcross 1989). We define the 2ECON (re-
spectively, 2NCON) problem to be the network design
problem where edge-disjoint (respectively, node-dis-
joint) paths are required, and we will speak in this
case of two-connected edge (or node) survivability
constraints. We will say that a 2ECON or a 2NCON
problem is given by (G, r) and implicitly assume that
G = (V, E) is a graph and r a vector of node types
with r € {0, 1, 2}".

Given a graph G = (V, E) and WC V, the edge set

(W) :=lij€ E|i € W,jE V\W}

is called the cuz (induced by W). (We will write 66( W)
to make clear—in case of possible ambiguities—with
respect to which graph the cut induced by W is con-
sidered.) For W, W’ C V' with WN W’ = ¢, we define
[W.: W= li€ ElielW, e W'}, so 8(W) =
[W : V\W]. We write 6(v) for 8({v}) if v is a single
node; W and V\W are called the shores of the
cut 6(W).

For W C V, we set E(W) := {ij € E|i,j € W}, and
denote by G[ W] := (W, E(W)) the subgraph induced
by W. We denote by G/W the graph in which WC V
is shrunk to a node. G — v denotes the graph obtained
by removing the node v and all incident edges from
G, and G — F denotes the graph obtained by removing
the edge set F from G (we write G — f instead of
G — {f}). If e is an edge, so that G — e has more
connected components than G, we will call e a bridge
of G. Similarly, if S is a node set, so that G — S has
more connected components than G, we call S an
articulation set of G. If a single node forms an articu-
lation set, the node is called an articulation node.

We extend the connectivity requirement function r
to functions operating on sets by setting for all
WCV,o#W#V,

r(W) = max{r,|s € W} forall WCV, and
con(W) := max{r(s, t)|s € W, t € V\W}
= min{(r(W), r(V\W)}.

Let us now introduce, for each edge e € E, a variable
x, and consider the vector space RE. Every subset
F C E induces an incidence vector X* = (X¢)eex € RE
by setting X2 := 1 if e € F, and X% = 0 otherwise;
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vice versa, each 0/1-vector x € RZ induces a subset
F* = {e € E|x, = 1} of the edge set E of G. For any
subset of edges F C E, we define x(F) := Y.cr Xx.. We
can now formulate the 2NCON network design prob-
lem introduced above as the following integer linear
program.

Minimize Y, c;x;
ijEE

subject to

x(6(W)) = con(W) forall WCV,
oF W#V; (1a)

for all z € V, and

for all W C V' \{z},
¢ # W# V\{z}
with (W) = 2 and
rEENCELUE Z) =62 (1b)

for all jj € E; (1c)
forall jj € E. (1d)

x(aG—z( W)) =1

0= Xij <1
X; integral

It follows from Menger’s Theorem that, for every
feasible solution x of (1), the subgraph N = (V, F*) of
G defines a network satisfying the two-connected node
survivability requirements. Removing (1b) results
(again by Menger’s Theorem) in solutions that satisfy
the two-connected edge survivability requirements;
i.e., we have an integer linear program for the 2ECON
network design problem. An inequality of type (1a)
will be called a cut inequality, one of type (1b) is called
a node cut inequality, and one of type (1c) is called a
trivial inequality. In Section 4, we note that the cut
and node cut inequalities can be checked in polynom-
ial time, and we show that the separation problem is
NP-hard for all other classes of inequalities considered
here.

The main objective of this paper is to describe a
cutting plane approach for the 2ECON and 2NCON
network design problems, respectively. To do this, we
define the following polytopes. Let G = (V, E)
and r € {0, 1, 2}7, the vector of node types, be
given, then

2NCON(G; r) := convix € R?|x

satisfies (a), (b), (c), (d) of (1)}
2ECON(G; r) := convix € R?|x

satisfies (a), (c), (d) of (1)}

are the polytopes associated with the 2NCON and
2ECON network design problems. (In these defini-
tions, conv denotes the convex hull operator.) We will
call these the 2NCON and 2ECON polytopes.

Cornuéjols, Fonlupt and Naddef study the domi-
nant of the 2ECON(G; r) polytope in the special case
where r = 2.1 (1 is the vector with all components
equal to 1). Monma, Munson and Pulleyblank study
the 2ECON(G; r) and 2NCON(G; r) polytope in the
special case where r = 2.1, and G is a complete graph
with the edge weights satisfying the triangle inequality;
they show that, in this case, there is an optimal solu-
tion to 2ECON that is also feasible for 2NCON, and
they give a certain type of “characterization” of the
optimal solutions. Mahjoub found that inequalities
(la) and (lc) are sufficient to characterize the
2ECON(G; r) polytope, where r = 2.1 and G is a
series-parallel graph. He also describes a class of ine-
qualities for the 2ECON(G; r)-polytope for general
graphs (and r = 2.1).

2. DECOMPOSITION

In this section, we describe an approach for decom-
posing the network design problem into smaller prob-
lems that can be solved independently of each other.
This is especially useful for the sparse graphs of the
real-world communication network design problems
that we have encountered. Sparse graphs may contain
edges that always have to be used by feasible solutions
of 2ECON or 2NCON, bridges, for instance. If such
edges exist (and also in other cases) it is possible to
decompose the problem into several subproblems that
can be solved independently of each other.

Reducing the problem size by decomposition
resulted in substantial reductions in the running time
of our algorithm; see Section 5.

Another advantage of decomposition is that we may
confine our polyhedral studies to those network design
problems that are defined on “nondecomposable”
graphs. This implies that the investigated polyhedra
are fully dimensional. Details are given in Grotschel
and Monma.

Next we will list some situations where decom-
position can be applied for a 2ECON or a 2NCON
problem given by (G, r).

1. For 2ECON and 2NCON: if graph G has a bridge
or an articulation node.

2. For the 2NCON problem: if G has an articulation
set of size 2 separating two nodes of type 2, or for
the 2ECON problem: if G contains a cutset of two
edges separating two nodes of type 2.

3. For 2ECON and 2NCON: if G contains an artic-
ulation set of size 2 separating a node of type 1
from a node of type 2, but not separating two nodes
of type 2. (Decomposition in this case results in
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subproblems that cannot be solved independently
of each other, but rather can be solved in a recursive
manner.)

Before going into the details of these decom-
positions, let us mention a strategic choice of our
implementation. In a first preprocessing stage, our
algorithm tries to find articulation nodes and bridges
to decompose the original problem into subproblems.
These are then solved independently of each other.
For some of the decompositions listed above we have
implemented only special cases so far.

2.1. Bridges and Articulation Nodes

Let the graph G = (V, E) and the node types r €
{0, 1, 2}” be given. Suppose that G has a bridge
e = v,v,, and G — e decomposes into two subgraphs
G, = (V,, E) and G, = (V2, E2) with v; € Vi
and v, € V> Ifr(Vy) = r(V2) = 2, the 2ECON problem
has no solution. The case r(V,) = 0 or n(V2) =0 is
also trivial. In any other case, define new node types
7 for G, by setting 7' (v;) := max{r(v), 1} and r'(v) ;==
r(v) for all other nodes of G,. For G, we define node
types r? in the same way. Clearly, if C\ C E isa
feasible solution to 2ECON on (G, ;) and C; € E;
is a feasible solution to 2ECON on (G, 12), then C; U
C, U {e} is a feasible solution to the original 2ECON
problem on graph G. The reverse also holds. So we
can solve 2ECON on (G,, ') and (G, r’) indepen-
dently of each other to find a solution for 2ECON on
(G, ).

The same (trivial, but useful) idea can be applied if
G has an articulation node v.

2.2. Articulation Sets of Size 2 Separating
Two Nodes of Type 2

For the 2NCON problem it is also useful to look for
articulation sets consisting of two nodes {u, v}, whose
removal from G creates at least two components
that each contain type two nodes. Let (V;, E), i =
1,..., p be the p different components of G — {u, v}.
Define G;= (V;, E}),i=1,. .., pasthegraph obtained
from (7, E;) by adding nodes u and v, the edge set
[{#, v}:V:] N E, and an artificial edge ¢, := uv with
cost 0. (Note that an edge between u and v in G will
be contained in an optimum solution if and only if its
cost is negative.) For G; we define a vector r’ of node
types by setting ri := r, for all nodes s € V;, and

A if r(V)) = 2,
ri, = {max{r,, 1}, ifr(Vi) =1,
0, if r(V) = 0;

ri is defined analogously:

Clearly, if C is feasible for 2NCON on (G, ), then
C, = (C N E;) plus the artificial edge is feasible for
2NCON on (G;, ri) for i = 1, ..., p. Conversely, if
C,CE,i=1,...,pis feasible for 2NCON on
(G, 1), then U, (C; N E) is feasible for 2NCON
on (G, r). So we can solve the p subproblems defined
on (G;, ') to derive a feasible solution to 2NCON on
the whole graph G. (See Figure 1. Here and in all
other figures, big squares denote node sets W with
r(W) = 2, and big circles denote node sets W with
r(W) = 1. Nodes of type 1 or 2 are denoted by small
circles and squares, respectively. A node of type 0 is
depicted only by its name without any symbol.)

Note that this decomposition (using an articulation
set of size 2) is, in general, infeasible for the 2ECON
problem. But, if there exists a cut of two edges {e, f}
so that in G — {e, f} two nodes of type 2 are discon-
nected, both of these edges have to be used by any
feasible solution, and we can decompose the 2ECON
problem on G in the same manner as above.

So far, we have implemented only a special case of
this type of decomposition. It is the case where G
contains a node w of type 2 and exactly two neighbor
nodes u and v. If there is still one more node of type
2 besides u, v, and w, the decomposition described
above can be applied to the articulation set {, v}, that
is, we replace the edges uw and wo by a single edge uv
with cost 0.

2.3. Articulation Sets of Size 2 Separating
Two Nodes of Type = 1

The following decomposition works for the 2ECON,
2NCON, and even the Steiner tree problem. It is
motivated by a similar sort of decomposition for the

Figure 1. Decomposition using an articulation set of
size 2.




Designing Low-Connectivity Communication Networks | 313

Steiner tree problem on directed graphs described by
Prodon, Liebling and Groflin (1985).

The decomposition to be described here can be used
in the situation where G contains an articulation set
{u, v} separating a node of type 1 from a node of type
at least 1, but not separating two nodes of type 2.
Actually, there are three decompositions according to
the node types of u and v, namely for the cases that:

L.r,=r =20,
2 =l andirf =0
3.r,=21andr, =il.

A characteristic of these decompositions is that the
subproblems must be solved in a certain order, not
independently of each other, because the output of
several of these subproblems determines the input to
the last one.

2.3.1. Both Nodes in the Articulation Set Are of
Type 0

Let G = (V, E) be a graph and r € {0, 1, 2} a vector
of node types. Let {u, v} be an articulation set with
r. = r, = 0, so that G — {u, v} has two components
G, = (V,, E)) and G, = (V>, E,) with r(V,) = 1 and
1 V,) = 1. We augment the component G, to a graph
G, = (V,, E,) by adding the nodes # and v and all
edges in E leading from u and v to the nodes in G,.
In the same way, we construct a graph G, from G,. If
there exist edges uv, we add them either to G, or to
G,, but not to both.

If C C E is a feasible solution to 2ECON on G, the
set T:= C N E, (called a partial tree) may have four
different forms, according to whether u and v are
connected in 7, or whether u or v are used at all. More
exactly, 7T is a feasible solution to one of the four
following Steiner tree problems: P,, P, P., P,. These
subproblems are defined on G, and use the same costs
and node types for all nodes in V;\{u, v} as in the
original problem; only the node types of # and v vary

E S

(a) (b)

as follows:

P, r,= 1 and r, = | and an artificial edge uv
Ipwith cost 0 is added;

Py, = 0Qand 7= It
P:r,=1andr, = 0;
Pisr =t andfrr=u8

See Figure 2 for possible feasible solutions to these
problems.

We say that a partial tree T is of type a if T'U {uv}
is feasible for P,, and we say that T is of type b
(respectively, ¢ or d), if T is feasible for P, (respec-
tively, P, or P,). Clearly, a partial tree of type d is also
feasible for the network design problems P,, P,, and
P, but generally a solution of type a is not feasible for
the network design problem P;. So the set of feasible
solutions of type d is a subset of the feasible solutions
of type a.

Let T,, Ty, T., T, be the four optimal solutions of
each type a, b, ¢, d with values a, b, c, d, respectively.
Note that d = max{a, b, ¢}.

Now we replace the graph G, in G by a simpler
graph G{ = (V1, E}) (the gadget), consisting of three
edges uu’, u’'v’, v’v with edge weights depending on
the values a, b, ¢, d (see Figure 3). The nodes u’ and
v’ receive node type 1; # and v retain their node types.
We call the resulting graph G’ (= G, plus the gadget).

For any feasible solution C’ in G’, the set
C’ N EY has only four different forms, namely,

T, = EN\u'v'},

T} <= Ei\{uu'},
T := E{\{vv'},
T,:=Ej.

Let k denote the value a + b + ¢ — 2d.

.

(c) (d)

Figure 2. Partial trees.
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d—1b d—c

Figure 3. Gadget. 5

Clearly, if C’ is feasible for the 2ECON problem
defined on G’ and the set T’ := C’ N Ej is T, then
T, can be replaced in C’ by 7, to get a feasible solution
for the 2ECON problem on G, and conversely. More-
over, the edge weights in the gadget and the constant
k are chosen so that C(T,) = ¢’(T;) + k.

The graph G’ with gadget G| and edge weights is
displayed in Figure 3, and the four possible partial
solutions 7', T}, etc. are shown in Figure 4. Note that
d = max{a, b, c}, so the edge weights are nonnegative.

On graph G’ exactly one 2ECON problem is solved.
Let C’ be the optimal solution. C’ can be written as
G U T witha Gy € Exiand T C E i Bli= 14
then C := C, U T, is a feasible solution in G with
the same cost as C’ (except for the additive con-
stant k) because c(C’) + k = c(Cy) + ¢'(T2) + k=
o(Co) + o(Tg) = ¢(C).

Therefore, if C’ was optimal for the 2ECON prob-
lem on G’, then C is optimal for the 2ECON
problem on G, and conversely.

Let us summarize this decomposition procedure.

Algorithm 1

We assume that G contains two nodes u, v of type 0,
such that G — {u, v} has two components G, =
(V], El) and Gz = (172, Ez) with r(V,) == and

n)=1.
Qf

Ts T;

Step 1. Construct two graphs G, = (V,, E,) and
G, = (V», E,) from G, and G>, as described above.

Step 2. Solve the four Steiner tree problems P,, Py,
P, P, in G,. Let T,, T,, T., T, be the corresponding
optimal solutions with costs a, b, ¢, and d, respectively
(see Figure 2).

Step 3. Construct graph G’ (see Figure 3) and solve
one 2ECON problem (or the 2NCON or Steiner-tree
problems) on this graph. (Here Algorithm 1 may be
called recursively.)

Step 4. Let C’ be the optimal solution found in
Step 3.Set C, ;= C’ N E;and T := C'\C..

IR = TlisetiChi=iCoild 1

it = TlsetiGr=1ColiTnete.

Step 5. C is the optimal solution for the 2ECON
problem on G (or the 2NCON or the Steiner-tree
problems).

2.3.2. Only One Node in the Articulation Set is of
Type 0

Further simplification is possible if one of the cut
nodes u and v, say u, is of type at least 1, and if
r, = 0. We can decompose graph G into two graphs
G, and G, as above. Let the partial trees in G, be
defined as above. In this case, it is not necessary to
distinguish between partial trees of type a or b, so we
can replace G, in G by a gadget G| with only two
edges and an artificial node v’; r, and 7, retain their
former values, and r, is set to 1 (see Figure 5). The
values a, ¢ and d are defined as the optimal values of
the Steiner tree problems P,, P., and Py and the
additive constant k is defined as a + ¢ — d. We set
T, := {v'v}, T, := {v'u}, and T := {w’, v'v}. Now
we can proceed with Step 3 of Algorithm 1 to find an
optimal solution to the 2ECON problem on G.

2.3.3. No Node in the Articulation Set is of Type 0

If both nodes u and v in the articulation set are of
type at least 1, we need only distinguish between
partial solutions of type a or d, so we compute the
values @ and d and solve the 2ECON problem on

T; T;

Figure 4. Types of solutions in the gadget.




Designing Low-Connectivity Communication Networks | 315

Figure 5. Gadget.

graph G, with an additional uv-edge of cost d — a.
The additive constant k is a (see Figure 6). If the edge
uv is used by an optimal solution C, we replace v in
C by the optimal partial tree of type d, else we augment
C by the optimal partial tree of type a.

This is easy to implement in the special case (and
was implemented by us) that some node w of type 1
has exactly two neighbor nodes # and v, both of type
at least 1. In this case, a is min{c(uw), c(wv)} and d —
a is max{c(uw), c(wv)}. The edge with the lower cost
is always used in an optimal solution, so we can
contract it and keep its weight, namely a, as an addi-
tive constant. The 2ECON problem can then be
solved on the contracted graph. This is exactly what
the “decomposition” amounts to in this simple case.
All other decomposition techniques mentioned in sub-
section 2.3 have not yet been implemented.

We also implemented a rather trivial reduction for
nodes of type 0 and degree 2. In this case, if all costs
are nonnegative, an optimal solution will either use
both edges or none. So one edge may be shrunk and
its cost added to the other edge.

We have devised, but not implemented, a further
decomposition procedure for 2ECON using a cut
S C E consisting of three edges so that in G — S two
nodes of type 2 are disconnected. Here ten types of
“partial solutions” are needed. We do not want to

discuss the details of this decomposition here. An area
of future research is decompositions on articulation
sets of size 3 separating two nodes of type 2. This may
become very complicated because many types of “par-
tial solutions” have to be considered.

Let us give a short summary of the situations that
are recognized and exploited by our code in a first
preprocessing stage:

1. bridges and articulation nodes disconnecting two
nodes of type at least 1; this includes an infeasibility
test for 2NCON (respectively, 2ECON) if there
exists an articulation node (respectively, bridge)
disconnecting two nodes of type 2;

2. nodes of degree 2.

For finding bridges and articulation nodes we use a
simple depth-first search algorithm described by
Hopcroft and Tarjan (1973a). For finding articula-
tion sets of size 2 there also exists a linear time
algorithm (see Hopcroft and Tarjan 1973b), based on
depth-first search, but that has not been implemented.
Even so, using the (trivial) decompositions listed
above on the real-world problems that we encoun-
tered, the graph sizes could be reduced by about one-
half on the average.

3. FACET-INDUCING INEQUALITIES

In this section, we describe several classes of facet-
inducing inequalities for the 2ECON and 2NCON
polytopes, which were derived in Grotschel and
Monma, and Grotschel, Monma and Stoer (1989).

Let G = (V, E) be a graph and let W C V with
| W| = 2. We set

MG, W) := the minimum cardinality of a subset of E,
whose removal from G disconnects two
nodes of W, and

k(G, W) = the minimum cardinality of a set S C

V U E’ whose removal from G’ dis-
connects two nodes of W, where G’ =
(V, E’) is the simple graph underlying
G.

If | W| < 2, then \(G, W) and (G, W) are defined
as «, If we consider subgraphs G = (V, E) of a graph
H with V' C W, we will write A\(G, W) instead of
NG, W N V). We will use these functions frequently
in two special situations. To shorten the notation in
these cases, we introduce the definitions

MG) = NG, V),
«(G) = «(G, V),
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where V; = {v € V|r, = i}y i'=10;1512.: S0 No(G) is
nothing but the edge connectivity of G, and ko(G)
is the node connectivity of G.

Throughout this section we make the following
assumptions on (G, r).

a. r € {0, 1, 2}" and at least two nodes s # ¢ satisfy
r=r=2

b. if we consider the 2ECON problem, we assume
that G is 2-node connected and \(G) = 3

c. if we consider the 2NCON problem, we assume
that G is 2-node connected and «»(G) = 3. )

We will say that (G, 1) satisfies (2) and mean that the
graph G = (V, E) and the vector r € Z of connectivity
types satisfy conditions (2) a, b, and c. If (2a) is not
satisfied, the 2ECON problem becomes the Steiner-
tree problem. We do not want to consider this special
case here. If b or c is not satisfied for some 2ECON
or 2NCON problem, it is possible to decompose it
into subproblems that satisfy b or c using the tech-
niques explained in Section 2. For problem instances
(G, 1) satisfying (2), we know that the associated
2ECON (respectively, 2NCON) polyhedron is fully
dimensional (Grotschel and Monma 1990, and
Grotschel, Monma and Stoer 1989).

A full description of the necessary and sufficient
conditions under which the inequalities listed in the
sequel are facet-inducing is given in Gtotschel,
Monma and Stoer (1989). These conditions are quite
complicated. Therefore, we will only give such neces-
sary conditions, for each type of inequality, that
helped to design and could be exploited by a separa-
tion routine.

An inequality a’x < a is valid with respect to a
polyhedron P if P C {x|a"x < a}; the set =
{x € Pla’™x = a} is called the face of P defined by
a’x < a. If dim(F,) = dim(P) — 1 and F. # ¢, then
F, is a facet of P and a'x < o is called facet-defining
or facet-inducing.

Theorem 1 follows from Theorem 3.3 in Grotschel
and Monma and characterizes which trivial inequali-
ties (1c) define a facet.

Theorem 1. Let (G, 1) satisfy (2).

a. x, < 1 defines a facet of 2ECON(G; 1) and of
2INCON(G; r) for all e € E.

b. x.= 0 defines a facet of 2ECON(G; 1) (respectively,
INCON(G, 1)) for e € E, if and only if for every
edge f # e, the polytope 2ECON(G - fe, f}; 1)
(respectively, INCON(G — {e, f}; 1)) is nonempty.

The next theorem gives necessary conditions for a
cut inequality (1a) to define a facet.

Theorem 2. Let (G, 1) satisfy (2) and let W C V with
o#EW#V.

a. Suppose that con(W) = 2. Then x(6(W)) =2 =
con(W) defines a facet of 2ECON(G; r) only if

G[W] and G[W\W] are connected; and
M(G[W)) = 2 and M(GINAW)) = 2.

b. Suppose that con(W) = 1. Then x(6(W) =1 =
con(W) defines a facet of 2ECON((G; 1) if and
only if

G[W] and GV \W)] are connected,
MGIW)) =2 and M(GIV\W)) = 2;
M(GIV\W]) = 3

c. Suppose that con(W) = 0. Then x(6(W)) =0 =
con( W) does not define a facet of 2ECON(G; r) or
of 2NCON(G; 1).

d. Suppose that con(W) = 2. Then x(8(W)) = 2
defines a facet of INCON(G; r) only if

the conditions of a are satisfied; and
k(G[W]) =2 and k(GIV\W]) = 2.

e. Suppose that con(W) = 1. T hen x(3(W)) = 1
defines a facet of INCON(G; r) only if

the conditions of b are satisfied, and
(G[V\W] —e) = 2 foralle€ E(V\W).

The following theorem gives some conditions for
when the node cut inequalities (1b) do not define facets
for 2NCON(G; 7).

Theorem 3. Let (G, 1) satisfy (2) and let a node
;€ Vandaset WCV\iz}, o # W# V' \{z} with
HW) = 2 and r(V\(W U {z}) = 2 be given. The
node cut inequality x(6-:(W)) 2 1 defines a facet
of 2NCON(G; 1) only if:

G[W]is connected,
MG Uz =2
MGIW]) = 2;
Conditions a-c also hold for W= V\(WU {z})
instead of W.

o elo 8

The next class of inequalities generalizes the cut
inequalities. Consider a graph G = (V, E) together
with a requirement vector r € {0,1,2}"anda partition
of V into nonempty subsets W, ..., W,, each con-
taining at least one node of type at least 1. The
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partition inequality induced by Wi, ..., W, is given
by
1 p
3 x(6(W7)
i=1

A3)

LIP if r(W;) = 2 for at least two sets W,
=1 p-1 ifr(W;)=2foronlyoneset ..

Theorem 4. Consider a partition inequality (3) for
2ECON(G; 1) (respectively, 2NCON (G; r)). Denote
by G the graph obtained by shrinking node sets Wi in
G to nodes w; of type F(w;) .= r(W5).

a. Suppose that (W) = 2 for at least two sets Wi.
The partition inequality defines a facet of
2NCON(G; r) only if

e 1(G) = 3 and «(G) = 2;

« in G every node of type 2 is adjacent to some node
of type 1;

« G has a cycle C containing all nodes of type 2;

G[W;] is connected fori= 1, ..., p;

MNGW D =2fori=1,...,p.

b. Suppose that r(W;) = 2 for only one set W..
The partition inequality defines a facet of
2NCON(G; 1) only if

« k(G) = 2;

« G[W,] is connected fori=1, ..., p;

e M(G[W ) =2fori=1,...,D;

o M(G[W;]) = 3 for the set W, with r(W;) = 2.

The class of node cut inequalities can be generalized
in a similar way as the class of cut inequalities. The
following class of node partition inequalities are valid
for the 2NCON polytope, but are not generally valid
for the 2ECON polytope. Let G = (V, E) be a graph
and r€ {0, 1,2}". Letz€ Vandlet W,,..., W, be
a partition of ¥'\{z} into nonempty node sets Wi
with #(W;) = 2 for at least two node sets. The
following node partition inequality induced by z
and W, ..., W,is given by

3 (3 em

i€l

* EZI x(86(W3) + x([{z} : User, W,-])>
=p=l, 4)

where I ;= {i € {1,...,p} | r(W) =k}, k=1,2.

Theorem 5. The node partition inequality (4) defines
a facet of INCON(G; r) only if

o G[W;] is connected for all i € I;
e MG[W;U {Z}]) =2 foralli € L;
e M(G[W ) =2foralli €I

e M(GIW)=2fori=1,...,p.

The next class of inequalities is closely related to
the 2-matching inequalities for the traveling salesman
problem (see Grotschel and Padberg 1985). A subclass
of it is also valid for the polytope of 2-covers of G
(i.e., those subgraphs of G where each node has a
degree of at least 2).

Consider a subset H C V called the handle and a
subset T C 8(H). For each e € T we denote by 7, the
set of the two endnodes of e. The sets T, e € T, are
called teeth. For simplicity, we also call the edges
e € T teeth in this paper. Furthermore, H is parti-
tioned into p = 3 sets H,, H,, ..., Hp,, with

er(H)z=1fori=1,...,p;

e r(H;) = 2 if H; has a nonempty intersection with
some tooth, i=1,..., D;

« no more than two teeth may intersect any H,,
= R

e |T| = 3 and odd.

The lifted 2-cover inequality induced by T'and I ke
H, is defined by

XEH)) - z X(E(H)) + x(0(H)) = x(T)

> _El_
=p [2J 5)

where LxJ denotes the largest integer not greater than
x. It is valid for 2ECON(G; r), but it does not generally
define a facet of 2NCON(G; 7).

Theorem 6. Let Hy, ..., H, and T that satisfy the
requirements above induce a lifted 2-cover inequality.
Denote by G the graph obtained from G by contracting
each set H, to a vertex h; of connectivity type r(H;). A
lifted 2-cover inequality (5) defines a facet of
2ECON(G; r) only if

« G[H] is connected,

« M(G[H]) = 2;

o G[H,] is connected fori=1, ..., p;
e M(G[H)=2fori=1,...,p.

If all nodes in V are supposed to be of type 2, and
if we take the H, to consist of only one node each, we
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arrive at a subclass of the lifted 2-cover inequalities,
the so-called 2-cover constraints:

x(E(H)) + x(8(H\T) = |H| —L|T]|/2]
forall HC Vand all T C 8(H). (6)

These inequalities are valid for the polytope of
2-covers. In fact, a complete description for the poly-
tope of 2.-covers—consisting of the degree constraints
in (7), the 2-cover constraints (6), and the trivial
constraints (1c)—can be derived from a complete
description of the b-matching polytope by viewing
the complement (¥, E\C) of a 2-cover (V, C) as
a subgraph of (V, E), whose node degrees may
not exceed a given number b,. The analogy between
2.covers and b-matchings allows us to use an algo-
rithm from b-matching theory to treat lifted 2-cover
inequalities, as will be seen in the next section.
More theoretical details can be found in Cook
and Pulleyblank (1987), and Grotschel, Monma
and Stoer (1991).

There are more classes of inequalities valid for
2ECON(G; r) or 2NCON(G; r) known; see, for
instance, Grotschel, Monma and Stoer (1989). But in
the design of our cutting plane algorithm we restricted
attention to the classes mentioned above.

4. IMPLEMENTATION OF THE CUTTING PLANE
ALGORITHM

In this section, we give an outline of the cutting plane
algorithm for solving 2ECON problems, and we will
describe our separation routines for partition, node
partition, and lifted 2-cover inequalities.

4.1. An Outline of the Cutting Plane Procedure

In a first preprocessing stage we identify the so-called
essential edges (edges that have to be used by any
feasible solution), and we decompose the problem into
several nondecomposable subproblems that can be
solved independently of each other. The tools for this
procedure are explained in Section 2. After having
solved all subproblems, we can put the solutions
together in a straightforward manner.

Let us assume therefore that we are given a 2ECON
problem on (G, r) that cannot be decomposed into
independent subproblems, ie., (G, r) satisfies (2). If
nothing else is said, the statements made in this sub-
section for 2ECON also apply to 2NCON.

The cutting plane procedure starts with solving

the LP

minimize ¢” x

subject to

x()) = r, forallv €& Vwith r, = 1,

0O<x,<1 forale€E @)

consisting of at most | V| degree inequalities and
2|E| trivial inequalities. Almost all of these de-
fine facets (see Theorems 1 and 2a and b) of
2ECON(G; ).

The optimal solution y € RE of this relaxation of
2JECON is usually not feasible for the polytope
2ECON(G; r). (If it were, we would be finished.)

So, in each iteration of the cutting plane algorithm
we try to find inequalities (more specifically: partition
and lifted 2-cover inequalities) that are valid for
2ECON(G; r), but are violated by . (In the case of a
2NCON problem, we also try to find violated node
partition inequalities.) Geometrically, such an ine-
quality defines a hyperplane in R® separating y from
the 2ECON polyhedron, a so-called “cutting plane.”
The exact algorithms and the heuristics for finding
violated inequalities violated by a given y are called
separation routines.

We add all the violated inequalities found by our
separation routines to the current LP and solve the
revised LP to get a new optimum solution y. (We do
not solve the new LP from scratch, but use postopti-
mization.) We repeat this process until the current
optimal LP solution y happens to be feasible for
2ECON(G; r), or no further partition or lifted 2-cover
inequalities violated by y are found. In the second
case, we proceed with a branch-and-cut method. This
enumerative technique had to be applied in only three
of our real-world examples.

In the first case (y is feasible) we know that y is
optimal because the present LP is a relaxation of the
2ECON problem. Note that the feasibility of y is
identical with y being a {0, 1}-vector that satisfies all
cut constraints (1a). This feasibility criterion is easy to
check.

Of course, since we are using only a subset of all
facet-defining inequalities for 2ECON (G; r), we can-
not be sure to find an optimal solution with such
a cutting plane algorithm for all graphs G, cost func-
tions ¢, and connectivity types r. For the majority
of the real-world examples known to us, the relaxa-
tion of the 2ECON polyhedron using partition and
lifted 2-cover inequalities was sufficient to find the
optimal solution.




Designing Low-Connectivity Communication Networks |/ 319

In any case, even if the present fractional solution y
is not feasible, its objective function value ¢’y provides
a lower bound for the 2ECON problem, which is
increased with every iteration (or at least, it does not
drop). With these lower bounds we can show that the
heuristic methods of Monma and Shallcross for the
2ECON problem perform very well (see Section 5).

We summarize the cutting plane algorithm next.

Cutting Plane Algorithm for the 2ECON
(or 2NCON) Problem

Step 1. Decompose the 2ECON (or 2NCON)
problem given by (G, r) into independent sub-
problems.

Step 2. For each subproblem do Steps 3-5:

Step 3. Solve the LP (7). Let y be the optimal
solution to this LP.

Step 4. While y is not feasible for 2ECON(G; r)
(or 2NCON(G; r)) do Step 5:

Step 5. Find violated partition and lifted 2-cover
inequalities, (in the case of 2NCON, also node parti-
tion inequalities), add them to the LP, and solve it.

Let y be the new LP solution. If no violated ine-
qualities can be found, branch on some variable with
fractional value.

Step 6. Put the solutions of all the subproblems
together.

In Sections 4.3-4.8 we describe the separation rou-
tines used in Step 5. In Section 4.2 we show that
the separation problems associated with partition
inequalities, node partition inequalities, and lifted
2-cover inequalities are NP-hard. This means that
our separation routines for these types of inequalities
can only be heuristics.

4.2. Complexity of the Separation Problems

In this section, we show that the separation problems
associated with partition, node partition, and lifted
2-cover inequalities are NP-hard. The same is true
for the class of partition inequalities for the Steiner-
tree polytope (see Grotschel and Monma). Note that
the exact separation for the cut inequalities (1a) and
the node cut inequalities (1b) can be performed in
polynomial time using the Gomory-Hu algorithm.
We start with the partition inequalities for the
Steiner-tree problem. Let G = (V, E) be a graph
with connectivity types r, € {0, 1} for all v € V. The
Steiner-tree polytope is defined as the convex hull
of all incidence vectors X, where F contains a
Steiner tree of G spanning the set of “terminal nodes”
{v € V:r,= 1}. It can also be characterized as the set
of {0, 1}-vectors satisfying inequalities (1a, c and d).

Let W, ..., W,be a partition of V'into p nonempty
node sets each containing at least one node of type 1.
The partition inequality

PECUIETE ®

is clearly valid for the Steiner-tree polytope (see also
Grotschel and Monma).

The separation problem for this and other classes
of inequalities is defined as follows.

The separation problem for a given class of inequali-
ties. Given a graph G = (V, E), connectivity types
r, € {0, 1, 2} for all v € V, and values y. = 0 for all
e € E. Decide whether y satisfies all inequalities of the
given class and, if not, find an inequality of the given
class violated by y.

In our NP-hardness proof, we make use of an
optimization problem related to the separation prob-
lem, with the difference that we want to determine a
“most violated” inequality. Let us first introduce an
additional notion.

RELSEP for a given class of inequalities. Given a
graph G = (V, E), connectivity types r, € {0, 1, 2} for
all v € V, and values y. = 0 for all e € E. (The
inequalities in the given class are supposed to be of the
form a"x = b with b > 0.) Decide whether y satisfies
all inequalities of the given class and, if not, find an
inequality a’x = b of the class such that (b — a” y)/b
is maximized.

We first show NP-hardness of RELSEP for our
various classes of inequalities by reduction from the
3-way cut problem. NP-hardness of the 3-way cut
problem was shown, or rather indicated, in an
extended abstract of Dahlhaus et al. (1983).

For a graph G = (V, E) and three different nodes
S1, $2, 83 (called special nodes), a 3-way cut is an edge
set C C E, such that s,, s, 53 are in different compo-
nents of G — C. If W, W,, W5 C V are a partition of
V, such that s; € W, and s, & W, for i, k € {1, 2, 3},
i # k, then UL, 6(W;) is a 3-way cut; moreover, every
3-way cut clearly contains such a special 3-way cut.

The problem of determining a minimum 3-way cut in
a graph. Given a graph G = (V, E) and vertices s, $a,
s3 € V, determine a 3-way cut C C E of minimum
cardinality.

Theorem 7. RELSEP for partition inequalities (8) is
NP-hard.
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Proof. Suppose that we have an instance of the 3-way
cut problem given by G = (V, E) and three special
nodes si, 52, and s3. We transform this instance into
an instance of RELSEP for partition inequalities. First
we use a standard min-cut algorithm to determine,
fori= 1,2, 3, acut &S of minimum cardinality
with s; € S; that separates s; from the other two special
nodes. We may assumethat | (S <|8(S)|=| 8(S3) | -
We set 7(s)) = 7(52) = r(ss) =1 and r, == 0 for all
other nodes v and define y; := 1 for all e € E. Note
that finding a 3-way cut of minimum cardinality in G
is equivalent to finding a partition inequality (8)
with p = 3, such that V232 V' (3(W1) is as small as
possible.

Next, we construct a graph G’ from G by adding
two edges 5152 and 5153 with y'(5152) = Y'(5183) =
18(S2)| — oSy + 1 (= k). With the addition of
these edges, the left-hand side of a partition inequality
(8) with p = 3, namely 1433, y'(W),), is changed only
by the constant 2k. The number k is chosen so that
3(S,) is the minimum cut in G’ (with respect to the
capacities y’) disconnecting any two special nodes.

We now call the algorithm for RELSEP with input
G',r,and y := y'/17y’. By our definition, y violates
all partition inequalities. So the algorithm for
RELSEP will output one. Ifitis a partition inequality
(8) with p = 3, then clearly the three sets of the
partition determine a minimum cardinality 3-way cut.
If it is a partition inequality with p = 2, we know that
for a minimum 3-way cut of cardinality, say ¢ (in G),

+ 2k
"—2— > |66(Sy)| + k.

This implies that ¢ = 2|¥(S2)| = | 8(Sy) U 8(S2)]-
Since 8(.S;) U 8(S>) is also a 3-way cut in G, it must be
a minimum one. In either case, we have found a
minimum 3-way cut of G. So RELSEP for partition
inequalities (8) is NP-hard.

NP-hardness of RELSEP for lifted 2-cover and
node partition inequalities can be shown in a similar
way.

Theorem 8. RELSEP for node partition inequalities
(4), lifted 2-cover inequalities (5), and partition ine-
qualities (3) is NP-hard.

The following result shows that with an exact sepa-
ration algorithm, for any class of inequalities with
certain properties, we can solve (in polynomial time)
the associated RELSEP problem. The proof uses the
polynomial-time equivalence relationships between

certain algorithmic problems established in Grotschel,
Lovasz and Schrijver (1988).

Theorem 9. Letal x=b;,i=1,...,m, be a system
of inequalities in R" withb,>0fori=1,...,m. Then
the problem of separating nonnegative vectors from
this class of inequalities is polynomial-time equivalent
to RELSEP for the same class.

Proof. Without loss of generality, we may assume
that the class of inequalities is given by @ a=sleton
j=l .0 . Lot is 1, ..., n, be the unit vectors
in R” with the ith component equal to one and all
other components equal to zero. Given y = 0, the
answer to RELSEP can be found by solving

minimize u"y
subject to
uw € P’ :=convia, . ..dm} + conefey, . . - 5 €n}-

Note that this optimization problem can be solved
using the ellipsoid method (see Grotschel, Lovasz and
Schrijver) if there is an oracle testing membership
for P’. It is easy to see that u € P’ if and only if
WTx = 1 is valid for the polyhedron P := {x|alx = 1,
i=1..., m;x=0}. Finally, the validity problem for
P can be reduced to separation over P, again by using
a result from Grotschel, Lovész and Schrijver. There-
fore, a polynomial algorithm for the problem of sep-
arating nonnegative vectors can be used to solve
RELSEP in polynomial time. The reverse direction
is trivially true.

This proves the following corollary.

Corollary. The separation problems associated with
the classes of partition inequalities (8) for the Steiner-
tree polytope, partition inequalities (3), node partition
inequalities (4), and lifted 2-cover inequalities (5) are
NP-hard.

4.3. Heuristics for Separating Partition
Inequalities

Let (G, r) satisfy (2), and let y be some point in R*
with 0 < y. < 1. Our aim is to find a partition
inequality violated by this point. By the results of
Section 4.2, it seems hopeless to find an efficient exact
algorithm for the separation of partition inequalities,
therefore, we have to use heuristics. Nevertheless, it
is possible to solve the separation problem for the
cut constraints (1a) in polynomial time. So, in our
heuristics we often use “almost violated” (cut)
inequalities and transform them into violated parti-
tion inequalities. Here, an almost violated inequality
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is an inequality a’x = b with a’y < b + « for some
“small” parameter « (we used « = 0.5); a’x = b isa
violated inequality; if a”y < b.

The heuristic that we applied has the following
general form.

Heuristic 1. Finding Violated Partition Inequalities

Step 1. Shrink all or some edges ¢ € E with the
property that any violated partition inequality using
this edge can be transformed into some at least as
violated partition inequality not using this edge.
(“Using e¢” means: e has a coefficient of 1 in the
partition inequality.)

Step 2. Find some violated or almost violated cut
constraints in the resulting graph.

Step 3. Attempt to modify these cut constraints
into violated partition inequalities.

We will explain our shrinking criteria of Step 1 in
Section 4.4. Here we will specify Steps 2 and 3 of the
general heuristic.

In Step 2 we apply the algorithm of Gomory-Hu
(1961) to graph G with costs y to find a cut 6(/¥) with
minimum cost y(6(7)). This algorithm produces the
so-called Gomory-Hu tree with the property that for
all pairs s, ¢ of nodes the minimum [s, ¢]-cut in the
tree is also a minimum [s, ¢]-cut in G. Gusfield (1987)
described a version of this algorithm that is very easy
to implement. It consists of solving | V| — 1 maxi-
mum flow problems on the graph G in a certain order.
As with our max-flow routine we used the algorithm
of Goldberg and Tarjan (1987) in an implementation
we obtained from R. Ahuja. This code is the fastest
max-flow algorithm available to us.

In Step 3 we are given some violated or almost
violated cut constraint x(6(7)) = con(W) derived
from the Gomory-Hu tree.

In many cases, the given cut inequality does not
define a facet because G[ W] contains a bridge e (a so-
called Steiner bridge), so that G[W] — e has two
components with node sets /#;, and W, both con-
taining nodes of type 1 or 2; i.e., the condition
M(G[W]) = 2 of Theorem 2a or b is violated. In such
a case, the cut constraint x(6(7)) = 2 can be written
as the sum of a partition inequality with partition
{W,, Wh, V\W} and the trivial inequality —x, = —1
(see Figure 7).

If the cut constraint is violated, the partition ine-
quality is also violated. So, instead of adding the cut
constraint to the LP, we add the partition inequality,
which defines a face of higher dimension than the
original cut constraint.

o @

e e V\w
s @
w V\W

Figure 7. Splitting a cut into a partition.

There is also a practical reason for doing this: Using
facets as cutting planes usually results in a more radical
change in the structure of the fractional solution than
using lower-dimensional faces. This is illustrated by
the following example, which actually occurred in our
computations. (See Figure 8, where solid lines denote
¥. = 1, and dashed lines denote y, = '».) Here, the
point y shown on the left violates the cut constraint
x(6({u, v})) = 1, which is implied by the partition
inequality with partition {{u}, {v}, V' \{u, v}}. When
the cut inequality was added to the LP, the point y on
the upper right was produced (satisfying the cut ine-
quality but not the partition inequality), but when the
partition inequality was added instead of the cut ine-
quality, the point y on the lower right was produced,
which looks (locally) feasible.

Also, the LP value changes more dramatically when
we tested our cut constraints for Steiner bridges. For
instance, in one problem, we obtained a lower bound
of 1,419.65 using only cut constraints. After this, no
more violated cuts were found. Using cut constraints
and testing for Steiner bridges made the lower bound
jump up to 1,474; the optimal value was 1,489.
So facet characterizations do have some practical
implications.

Another way of transforming a cut inequality
x(6(W)) = con(W) into a partition inequality is to
split W into separate node sets {w} for each w € W.
This requires that all nodes in W have a connectivity

R
e

aRE

Figure 8. Using the partition instead of the cut
inequality.
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type greater than 0. If there are nodes of type 0 inW,
we associate each of them with a node of type at least
1. This is done the following way.

Heuristic 2. Partitioning a Node Set W Into Sets W;
With r(W)) = 1
Given (G, ), a node set W, and a point y € R”.

Step 1, Set G' = G[W]and W' := w.

Step 2. As long as there are nodes v of type 0 in
W’ do:
Find a neighbor w of v in G’ with w € W and yuw a8
large as possible.
Shrink edge vw to node w with connectivity type 7w.
Identify parallel edges uw (by adding their y values).

Step 3. For each w; € W' set W; := the subset of
W represented by wi.

A drawback of Heuristic 2 is that an inequality with
many nonzero coefficients is created when W is large.
So we use it only for «small” sets W, say, with not
more than seven nodes of type at least 1.

Usually, our routines for splitting W work well only
in the first few iterations of the cutting plane algo-
rithm, because after a while the cuts produced in
Step 2 of Heuristic 1 are only degree constraints of
the form x(8(w)) = -

So we also employ a heuristic that enlarges the shore
of an (almost) violated cut 8(W) by adding a certain
branch of the Gomory-Hu tree. That is, a node w is
determined that is adjacent to W by an edge of “high”
y; value. The subtree (of the Gomory-Hu tree) defined
by wis then added to set W. Now the splitting routines
can be applied to W to derive some partition inequal-
ities that hopefully are violated.

The Gomory-Hu algorithm (with about O(n*) worst
case running time) may become very slow for large
graphs because ! max-flow problems have to
be solved. In the next section, we explain how problem
sizes can be reduced before the Gomory-Hu algorithm

is applied.

4.4. Shrinking Criteria for Partition Inequalities

One very useful method to decrease problem sizes for
the separation of partition inequalities is to shrink
those edges e of the current fractional solution y with
the property that any violated partition inequality
using e can be transformed into another at least as
violated partition inequality not using e.

Here we present several conditions for shrinking
edges e = uv, depending on the value y., the connec-
tivity types r,and ro, and the values y(8(1)) and Y(6(v)).
When shrinking edge uv, edges uw and vw are identi-

—m

fied and the y-values are added. The connectivity
type of the shrunk node is set to min {r(V \u, v}),
max(ry, 1)}

For each shrinking criterion, we give a proof of why
there is a partition inequality not using € that is at
least as violated as a partition inequality using e.

Criterion 1. y. = k= max(r,: weE V).

Proof. Suppose that {Wi, ..., W,} induces a violated
partition inequality with u € W, and v € W>. The
partition inequality has a right-hand side of p— Lif
all nodes of type 2 are contained in one Wi Ifp=3,
the sets Wy U Wa, Wi, ... W, also induce a partition
inequality. The left-hand side decreases by at least
y. = k; the right-hand side decreases by at most k.
(Note that if k = 2, it may happen that W, and W>
are the only node sets in the partition containing
nodes of type 2. In this case, the right-hand side of
(WU Wo, Wi, oo W,} decreases by two.) So the
new partition inequality is at least as violated as the
original one, and it does not use edge e. If p= 2, then
{ W W,} does not define a violated partition

inequality.
Criterion 2. Y. = 1y and ye = Y(8(v)) — Ye-

Proof. Suppose that {1, W, ..., W,} induces a
violated partition inequality with u € W, and v € Wa.
If r, = 2, Criterion 2 is the same as Criterion 1
Ifr, < 1, and W2 contains (besides v) some other
node of type at least 1, we can replace {Wi, Wa,
L, Wby (U v}, Wa\v}, - > w,}. The differ-
ence in the left-hand side between the first and the
second partition inequality is

ALl WD — YT} WD) = 3. = GO = ¥ = 0.

The right-hand sides do not differ, as W, U {v} and
Wo\{v} still contain nodes of type 2. Therefore, the
second partition inequality is at least as violated as
the first, and it does not use e.

The above transformation does not work if r, = 1
and W, contains (besides v) only nodes of type 0. But
the partition inequality induced by (W) U Wa, Wi
..., W,} is at least as violated as the partitior
inequality induced by (Wi, Wa, - .- w,tif p =
JEp =28 the partition (or cut) inequality induced by
{W,, W} cannot be violated, because it has a right
hand side of 1.

4.5. Separating Node Partition Inequalities

Let (G, r) be an instance of the 2NCON problem an
let y be some point in RE with 0 < y. < 1 for al
e € E. Our aim is to find a node z and a partitiol
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{W, ..., W,} of V'\{z}, such that the node partition
inequality induced by z and {W, ..., W,} is violated
by y. The candidate nodes z are determined as the
articulation nodes of the graph G’ := (V, E’), where
E’ contains all edges of a y-value of at least 2. Once
this is done, a partition of V' \{z} is found as follows,
using principally the same ideas as for the separation
of partition inequalities.

Heuristic 3. Separating Node Partition Inequalities
Given (G, r) and a point y € RE.

Step 1. For all articulation nodes z of graph G’
separating at least two nodes of type = 2, do:

Step 2. Shrink all (or some) edges e of G — z with
the property that any violated node cut inequality
using this edge can be transformed into some at least
as violated node cut inequality not using this edge.

Step 3. In the resulting shrunk graph G” (not con-
taining z) finds some cuts dg-(W) with y(6s(W)) <
1 + a, where a := Y.

Step 4. Attempt to transform one shore (W or
V\W) of such a cut és(W) into violated node parti-
tion inequalities of G.

The shrinking in Step 2 is done by criteria analogous
to the criteria used for partition inequalities described
in Section 4.4.

The cuts in Step 3 are found by using the Gomory-
Hu algorithm. The transformation of cuts §(#) into
violated node partition inequalities in Step 4 is done
by splitting W exactly as in Heuristic 2. Here V' \W is
the shore containing the node v with the highest value

Y(86(0)).

4.6. Separating Lifted 2-Cover Constraints

The separation problem for lifted 2-cover constraints
(5) is NP-complete, but there exists an efficient
(polynomial-time) algorithm for separating 2-cover
constraints (6). This exact separation routine is a
straightforward modification of the algorithm of
Padberg and Rao (1982) for the separation of
1-capacitated h-matching constraints.

The Padberg-Rao algorithm achieves the following.
Given positive integers b, for all v € V and a vector
7 € R with y(8(v)) < b, for all v € V it finds a node
set H C V and an edge set T C 6(H) with Yuen by +
| T'| odd such that the value

S PLILE ) -y -5 o)

vEH

1S minimal.

We now describe how this algorithm is applied to
our case. We are given (G, r) and some vector y = 0
satisfying y((v)) = r, for all v. Suppose for the moment
that the node types r, take only values of 2. The
Padberg-Rao algorithm applied to b, := |8(v)| — 2 (for
allv € V) and y := 1 — y finds (rewriting (9) appro-
priately) a node set H and an edge set T C 6(H), such
that 7" := 8(H)\T is of odd cardinality, and

VEH)) + y6HNT) — |H| + (I T| - 1)/2

is minimal. Comparing this with the 2-cover inequal-
ity (6) we see that in the case when all node types are
2, the Padberg-Rao algorithm can be used to separate
2-cover inequalities exactly.

If the node types are 0, 1, and 2, the Padberg-Rao
algorithm is applied to b, := | 6(v)| — r, for all nodes
v of types 0 and 2, b, := | 6(v)| — 2 for all nodes v of
type 1, and p := 1 — y. This setting may violate one
of the necessary conditions for the application of the
Padberg-Rao algorithm, namely y(5(v)) < b, for all
v € V. We ignore this and use the Padberg-Rao
algorithm to get a node set H and an odd-cardinality
edge set 7 := 6(H)\T such that

WEH)) + y(3(HN\T) = |H N V3|
+(T| - 1/2 (10)

is of (hopefully) low value, where V, :=fv € V| r, =
1}. This expression may not correspond to a lifted
2-cover inequality (5) if H contains nodes of type 0,
so, to find such an inequality, we use Heuristic 2
to partition H into node sets H,, each containing ex-
actly one node of a nonzero type. There is, however,
no guarantee that a violated, lifted 2-cover inequality
is produced, even if one exists.

A sketch of our heuristic for separating lifted
2-cover constraints follows.

Heuristic 4. Separating Lifted 2-Cover Constraints
Given (G, r) and a point y € RE.

Step 1. Shrink one-paths, as described in
Section 4.7.

Step 2. Using the Padberg-Rao algorithm, find H,
T with “low” values of (10).

Step 3. Try to transform each H and T found in
Step 2 into a (hopefully violated) lifted 2-cover con-
straint, as described in Section 4.8.

In the remaining sections we will give some further
details for Steps 1 and 3.
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4.7. Shrinking One-Paths

We can shrink some edges according to criteria similar
to those used for the separation of partition inequali-
ties. Many such shrinking criteria are known for the
TSP-case (such as alternating paths and one-paths,
(see Padberg and Grotschel 1985, and Padberg and
Rinaldi 1990) but not all apply to our two-connected
case. For instance, the concept of alternating paths
does not carry over because in our case the degree
equations x(6(v)) = 2 are not necessarily satisfied. But
we can shrink certain one-paths, i.e., paths P, where
all edges ¢ € P have y. = 1 and all nodes v € P (except
the endnodes) satisfy y(8(v)) = 2
All one-paths between two nodes of type 2 may be
shrunk to a single edge e having weight y. = 1. Also,
all one-paths where one endpoint is of type one or
zero, and has at most two incident edges with nonzero
weight (for instance, the leaf of a tree of one-edges),
may be shrunk into a single node (see Figure 9).

4.8. Converting Odd Cuts into Lifted 2-Cover
Constraints

Suppose that we have found H C V and an odd subset
T of §(H) such that (10) has a “low” value. Our aim
is to transform this into a (hopefully violated) lifted
2-cover constraint.

We choose H or V\H (usually we try both) as the
handle of the lifted 2-cover inequality, and we use the
given set T as its teeth. Using Heuristic 2 we find a
partition of H into node sets H, i =1, ..., D, each
containing at least one node of a type at least 1.

We still have to adjust the lifted 2-cover inequality
to meet the requirement that no more than one tooth
is incident to a set H; with r(H;) = 2, and that 1o
tooth is incident to a node set H; with r(H;) = 1. We
do this in the following way:

« If exactly two teeth are incident to a node set Hj, we
set H:= H\H;and T := T \&(H,).
If |T| =1 we discard the current lifted 2-cover
inequality.

« If more than two teeth are incident to some H;, or
if some tooth is incident to H, with r(H;) = 1, we
also discard the current lifted 2-cover inequality.

s

Figure 9. Shrinking one-paths.

We now give a short description of what we imple-
mented of the separation routines listed above. First,
we implemented the Gomory-Hu algorithm for sepa-
rating the cut constraints. (This is an exact algorithm.)
After we observed that many cut constraints were t00
weak (in the sense that they did not define facets), we
implemented the test for Steiner bridges and, as an
alternative, Heuristic 2. To reduce the graph sizes to
which the Gomory-Hu algorithm is applied, we im-
plemented the various shrinking criteria outlined
above. Some of the routines used for the separation
of partition inequalities, like the Gomory-Hu algo-
rithm, Heuristic 2, and some of the shrinking proce-
dures, were also useful to separate node partition and
lifted 2-cover constraints. So we actually put all these
ideas to work in our implementation.

5. COMPUTATIONAL RESULTS

The aim of our work was to develop a cutting plane
algorithm that solves problems of the type and size
that come up in the design of survivable telephone
networks in fiber optic technology. We knew before-
hand that the number of hubs (nodes) considered in
practical applications is relatively small (at most 200)
and that the networks (graphs) of possible direct fiber
links (edges) are quite sparse. Thus, we had good hopes
that the preprocessing and LP-relaxation techniques
would provide very good lower bounds for the true
optima in short computation time. We now report
how well our cutting plane algorithm performed on
these problems.
To test our code, network designers at Bell
Communications Research provided the data (nodes,
possible direct links, costs for establishing a link) of
7 real networks that were considered typical for this
type of application. The sizes ranged from 36 nodes
and 65 edges to 116 nodes and 173 edges; see
Table I. The problem instances LATADL, LATADS,
and LATADSF are defined on the same graph G. The
edges have the same costs in each case, but the node
types vary. Moreover, in LATADSF, 40 edges were
required to be in the solution. (The purpose of these
problem variations was to see how the cost would
change under different scenarios. This approach is
typically used in practice, where several alternative
solutions are usually investigated before the planner
selects a final solution.)
Table 1 provides information about the problems.
Column 1 contains the problem names. For the orig
inal graphs, columns 2, 3, and 4 contain the numbe
of nodes of type 0, 1, and 2, respectively; column 5
lists the total number of nodes, column 6 the number
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Table 1

Problem Descriptions for the Original and Reduced Graphs

Original Graph Reduced Graph
Problem 0 1 2 Nodes Edges 0 1 2 Nodes Edges
LATADMA 0 12 24 36 65/0 O 6 15 21 46/4
LATA1 8 65 14 7l 112/0 0 10 14 24 48/2
LATASS 0 31 8 39 71708 20 1 8 23 50/0
LATASL 0 36 10 46 98/0 0 20 9 29 77/1
LATADSF 0 108 8 116 173/40 0 28 11 39 86/26
LADADS 0 108 8 116 173/0 0 28 11 39 86/3
LATADL 0 84 32 116 173/0 O 11 28 39 86/6

of edges and the number of edges required to be in
any solution (the forced edges). All graphs were ana-
lyzed by our preprocessing procedures described in
Section 2. Preprocessing was very successful. In fact,
in every case, the decomposition and fixing techniques
ended up with a single, much smaller graph obtained
from the original graph by splitting off side branches
consisting of nodes of type 1, replacing paths where
all interior nodes are of type 2 by forced edges, etc.
The data of the resulting reduced graphs are listed in
columns 6, . . ., 10 of the table.

To give a visual impression of the problem topolo-
gies and the reductions achieved Figure 10 shows a
picture of the original graph of the LATADL problem
(with 32 nodes of type 2 and 84 nodes of type 1), and
Figure 11 is a picture of the reduced graph (with
39 nodes and 86 edges) after preprocessing. The
nodes of type 2 are displayed by squares, and the
nodes of type 1 are displayed by circles. The six forced
edges that have to be in any feasible solution are
drawn in bold.

LATAL1 is a 2ECON problem, while the other six
instances are 2NCON problems. All optimum solu-
tions of the 2ECON versions turned out to satisfy all
node-survivability constraints and thus were optimum
solutions of the original 2NCON problems—with one
exception. In LATASL, one node is especially attrac-
tive because many edges with low cost lead to it. This
node is an articulation node of the optimum 2ECON
solution. In the following, LATASLE is the 2ECON
version of LATASL.

We now provide some details of our algorithm and
its implementation. In a preprocessing phase we try
to decompose and reduce the given problems using
the methods described in Section 2. The result of this
procedure is a graph (or a list of graphs) that is not
decomposable. The cutting plane algorithm is called
for each such graph.

Our cutting plane algorithm follows the standard
approach (see the Cutting Plane Algorithm). We use

the framework of a (general) branch-and-cut algo-
rithm that is currently being developed by Michael
Jiinger. The LP-solver used is a research version of
the CPLEX-code provided to us by Bixby (1991). This
is a very fast implementation of the simplex algorithm.

Since the number of variables of our test problems
is relatively small, we do not employ any techniques
(other than preprocessing) to eliminate variables from
a current LP.

In 5 of the 8 test problems, the cutting plane algo-
rithm produced an optimum solution. The other three
cases were solved by branch and cut. This consists of
choosing a branching variable, setting some variables
to their upper and lower bounds according to their
reduced costs and some logical implications, and find-
ing new cutting planes for the modified problem. The
branch-and-cut tree is traversed in depth-first search
fashion. We did not run heuristics to provide a good
initial upper bound for the enumeration phase or to
turn fractional solutions into feasible integral solutions
to improve the intermediate upper bounds. We simply
wanted to test the general method (developed by
Michael Jiinger) for this particular case. It did, as
Table II shows, quite well. Clearly, considerable
improvements can be achieved by implementing
problem-specific modifications and adding various
heuristics. We do not go into further details of the
branch-and-cut procedure because this is very techni-
cal (and even a rough outline would require a lot of
space) and the emphasis is on the cutting plane algo-
rithm in this paper.

Our code also contains an option to add further
cuts manually. For instance, we were able to solve
LATASL by manually adding partition, node parti-
tion, and 2-cover inequalities that could not be found
automatically; for LATADL we had to use, among
others, a certain inequality to achieve the optimal
solution without branching, and the best lower bound
for LATADS that we could reach by adding any valid
inequalities known to us is still one unit away from
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Figure 10. Original graph of the LATADL problem.

the optimal value. So our polyhedral description of
2ECON(G; r) and 2NCON(G; r) is good enough to
achieve very good lower bounds, but not sufficient to
always find the optimal solution without resorting to
an enumeration phase like branch and cut.

Table II contains some data about the performance
of our code on the 8 test instances. The entries from
left to right are:

IT

P

the number of iterations (= calls of the LP
solver);

the number of partition inequalities (3)
added to the initial LP (7);

the number of node partition inequalities (4)
added to the initial LP (7);

2C

C

GAP

the number of lifted 2-cover inequalities (5)
added to the initial LP (7);

the value of the optimum solution after ter
mination of the cutting plane phase;

the optimum value;

100 x (COPT — C)/COPT (= the percent
relative error at the end of the cutting plane
phase);

the total running time including input, out
put, preprocessing, etc. of the cutting plane
phase (not including branch and cut), i
rounded seconds on a SUN 3/60 workstatior
(a 3-MIPS machine);

the number of branch-and-cut node
generated;
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Figure 11. Reduced graph of the LATADL problem.

Table IT
Data for Eight Test Problems

Problem I P NP, 2C C COPT GAP T BN BD BT

LATADMA 11 49513 5 1,489.00 1,48  0.00 7 - - -

LATA1 4 43 0 1 4,296.00 4,296 0.00 6 — - —

i LATASS 4 S350 0 4739.00 4,739 0.00 6 — - —
LATASLE OR G/ () 0 457400 4,574  0.00 6 — — —

LATASL RIS 2SR SES |$5941679.000 4726880199 C 20810 7 80

LATADSF OS2 GRME0) 0 7,647.00 7,647  0.00 9 - - -

LATADS 9 18T a0 2407;300.00' ¥ 7,320 2027 22 +.20 Oasupl 12

LATADL 14, 516050 01 ) 28, 1 7,378:25117,400. £ 4033551731 6 3 69
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Table III BD the maximum depth of the branch-and-cut
Running Times for the Cutting Plane Algorithm tree;
Time/ BT the total running time of the branch-and-cut
Problem PREPT% CUTT% LPT% MT% Time Red algorithm including the cutting plane phase,
LATADMA 0.7 371  39.0 2327 8 in seconds.
i:i:;s (1)(25 fgi g‘;‘g 2(6); g 2; We think that it is worth noting that each of this
LATASLE 05 345 HO3. ASTE 6L 14 sample of real problems, typical in size and structure,
LATASL 0.4 490 442 64 20 43 can be solved on a 3-MIPS machine in less than two
LATADSF 0.7 293 154 546 9 25 minutes, including all input and output routines,
LATADS 0.4 331 597 68 22 131 drawing the solution graph, branch and cut, etc.

sl b 94 ol o1 109 A detailed analysis of the running times of the

Figure 12. Solution of the LATADL problem.
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cutting plane phase is given in Table III. All times
reported are in percent of the total running time TIME
(without the branch-and-cut phase). The entries from
left to right are:

PREPT the time spent in the preprocessing
phase (in percent);

CUnRT the time spent in the separation rou-
tines (in percent);

CPT the time used by the LP code CPLEX
(in percent);

MT the miscellaneous time for input, out-
put, drawing, etc. (in percent);

TIME total time (in seconds);

TIME\RED  the total time (in seconds) of the algo-
rithm when applied to the original in-
stance without prior reduction by
preprocessing.

The last column TIME\RED shows the running
times of the cutting plane phase of our algorithm
applied to the full instances on the original graphs
(without reduction by preprocessing). By comparing
the last two columns, one can clearly see that substan-
tial running time reductions can be achieved by our
preprocessing algorithms. Reduction pays.

A structural analysis of the optimum solutions pro-
duced by our code shows that—except for LATADSF,
LATASL, and LATA1—the optimum survivable net-
works consist of a long cycle (spanning all nodes of
type 2 and some nodes of type 1) and several branches
connecting the remaining nodes of type 1 to the cycle.
The optimum solution of LATADL is shown in
Figure 12, with the 2-connected part (the long cycle)
drawn in bold.

We ran a few tests on randomly generated problems
of higher density. Here our code performed reasonably
but not as well. (That is not of great importance
because our goal was to solve real-world and not
random problems.) More serious is a dramatic in-
crease in running time when many nodes of type 0
are added. In this case, it takes very long before the
intermediate fractional solutions become connected.
We think that for such cases new separation heuristics
have to be developed that perform a more sophisti-
cated structural analysis of the given instance. But the
problems that we address here and that come up in
the design of fiber optic telephone networks have very
few, if any, nodes of tvpe 0.

Our computational experiments show that our ap-
proach produces very good lower bounds and even
optimum solutions in the initial cutting plane phase
for problem instances that are sparse and do not have

Table IV
Comparison of the CHEUR and COPT Solutions

Problem COPT CHEUR GAP
LATADMA 1,489 1,494 0.34
LATA1 4,296 4,296 0.00
LATASS 4,739 4,739 0.00
LATASLE 4,574 4,574 0.00
LATASL 4,726 4,794 1.44
LATADSF 7,647 T1207 1.05
LATADS 7,320 7,361 0.56
LATADL 7,400 7,460 0.81

too many nodes of type 0. This work is a good basis
for the design of a production code for the 2ECON
and 2NCON problems coming up in fiber optic net-
work design and a start toward problems with higher
and more varying survivability requirements and
larger underlying graphs.

Another motivation for our work was to find out
how well the heuristics developed in Monma and
Shallcross perform. They do very well. Table IV com-
pares the values CHEUR of the solutions produced
by the heuristics with the optimum values COPT
computed by our code. The percent relative error GAP
(= 100 X (CHEUR — COPT)/COPT) is always below
1.5%. In three cases the heuristics found an optimum
solution. This result justifies the present use of these
heuristics in practice. They are part of the “FIBER
OPTIONS Software” marketed by Bellcore (1988).
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